A Relatively Complete Calculus for Structured Heterogeneous Specifications

  • Till Mossakowski
  • Andrzej Tarlecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8412)

Abstract

Proof calculi for structured specifications have been developed independently of the underlying logical system (formalised as institution). Typically, completeness of these calculi requires interpolation properties of the underlying logic. We develop a relatively complete calculus for structured heterogeneous specifications that does not need interpolation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bor00]
    Borzyszkowski, T.: Generalized interpolation in CASL. Information Processing Letters 79, 19–24 (2000)CrossRefMathSciNetGoogle Scholar
  2. [Bor02]
    Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286, 197–245 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. [CKTW08]
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [CM97]
    Cerioli, M., Meseguer, J.: I borrow your logic? (transporting logical structures along maps). Theor. Comput. Sci. 173(2), 311–347 (1997)Google Scholar
  5. [CMM13]
    Codescu, M., Mossakowski, T., Maeder, C.: Checking conservativity with Hets. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 315–321. Springer, Heidelberg (2013)Google Scholar
  6. [CoF04]
    Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004), http://www.cofi.info MATHGoogle Scholar
  7. [DF02]
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theoretical Computer Science 285, 289–318 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. [Dia02]
    Diaconescu, R.: Grothendieck institutions. J. Applied Categorical Structures 10, 383–402 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. [Dia04]
    Diaconescu, R.: Interpolation in Grothendieck Institutions. Theoretical Computer Science 311(1-3), 439–461 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. [Dia08]
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)Google Scholar
  11. [DM00]
    Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74, 65–71 (2000)CrossRefMATHMathSciNetGoogle Scholar
  12. [Fin79]
    Fine, K.: Failures of the Interpolation Lemma in Quantified Modal Logic. J. of Symbolic Logic 44(2), 201–206 (1979)CrossRefMATHGoogle Scholar
  13. [FS88]
    Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 44–72. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  14. [GB92]
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)CrossRefMATHMathSciNetGoogle Scholar
  15. [GR02]
    Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13(3-5), 274–307 (2002)CrossRefMATHGoogle Scholar
  16. [HST94]
    Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic representations. Annals of Pure and Applied Logic 67, 113–160 (1994)CrossRefMATHMathSciNetGoogle Scholar
  17. [Mac98]
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)Google Scholar
  18. [MAH06]
    Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof management for structured specifications. J. of Logic and Algebraic Programming 67(1-2), 114–145 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. [Mes89]
    Meseguer, J.: General logics. In: Logic Colloquium 1987, pp. 275–329. North Holland (1989)Google Scholar
  20. [MML07]
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. [Mos02a]
    Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. [Mos02b]
    Mossakowski, T.: Relating CASL with other specification languages: the institution level. Theoretical Computer Science 286, 367–475 (2002)CrossRefMATHMathSciNetGoogle Scholar
  23. [Mos05]
    Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation thesis, Universität Bremen (2005)Google Scholar
  24. [Mos06]
    Mossakowski, T.: Institutional 2-cells and grothendieck institutions. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 124–149. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. [MT09]
    Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. [SB83]
    Sannella, D., Burstall, R.: Structured theories in LCF. In: Ausiello, G., Protasi, M. (eds.) CAAP 1983. LNCS, vol. 159, pp. 377–391. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  27. [Sho67]
    Shoenfield, J.: Mathematical Logic. Addison-Wesley (1967)Google Scholar
  28. [ST88a]
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)CrossRefMATHMathSciNetGoogle Scholar
  29. [ST88b]
    Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic specifications: Implementations revisited. Acta Informatica 25, 233–281 (1988)CrossRefMATHMathSciNetGoogle Scholar
  30. [ST12]
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. An EATCS Series. Springer (2012)Google Scholar
  31. [ST13]
    Sannella, D., Tarlecki, A.: Property-oriented semantics of structured specifications. In: Mathematical Structures in Computer Science (2013)Google Scholar
  32. [Tar00]
    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems 2, Studies in Logic and Computation, pp. 337–360. Research Studies Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Till Mossakowski
    • 1
  • Andrzej Tarlecki
    • 2
  1. 1.Faculty of Computer ScienceOtto-von-Guericke University of MagdeburgGermany
  2. 2.Institute of InformaticsUniversity of WarsawPoland

Personalised recommendations