Unsafe Order-2 Tree Languages Are Context-Sensitive

  • Naoki Kobayashi
  • Kazuhiro Inaba
  • Takeshi Tsukada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8412)

Abstract

Higher-order grammars have been extensively studied in 1980’s and interests in them have revived recently in the context of higher-order model checking and program verification, where higherorder grammars are used as models of higher-order functional programs. A lot of theoretical questions remain open, however, for unsafe higherorder grammars (grammars without the so-called safety condition). In this paper, we show that any tree languages generated by order-2 unsafe grammars are context-sensitive. This also implies that any unsafe order-3 word languages are context-sensitive. The proof involves novel technique based on typed lambda-calculus, such as type-based grammar transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level 2 for string languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland (1958)Google Scholar
  3. 3.
    Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95–207 (1982)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Haddad, A.: IO vs OI in higher-order recursion schemes. In: Proceedings of FICS 2012. EPTCS, vol. 77, pp. 23–30 (2012)Google Scholar
  5. 5.
    Haddad, A.: Model checking and functional program transformations. In: Proceedings of FSTTCS 2013. LIPIcs, vol. 24, pp. 115–126 (2013)Google Scholar
  6. 6.
    Inaba, K., Maneth, S.: The complexity of tree transducer output languages. In: Proceedings of FSTTCS 2008. LIPIcs, vol. 2, pp. 244–255 (2008)Google Scholar
  7. 7.
    Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 566–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3) (2013)Google Scholar
  10. 10.
    Kobayashi, N.: Pumping by typing. In: Proceedings of LICS 2013, pp. 398–407. IEEE Computer Society (2013)Google Scholar
  11. 11.
    Kobayashi, N., Inaba, K., Tsukada, T.: On unsafe tree and leaf languages (2014) (in preparation)Google Scholar
  12. 12.
    Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes. In: Proceedings of LICS 2009, pp. 179–188. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model checking. In: Proceedings of PLDI 2011, pp. 222–233 (2011)Google Scholar
  14. 14.
    Kobele, G.M., Salvati, S.: The IO and OI hierarchies revisited. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 336–348. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. 15, 1170–1174 (1974)MATHGoogle Scholar
  16. 16.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: Proceedings of LICS 2006, pp. 81–90. IEEE Computer Society (2006)Google Scholar
  17. 17.
    Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching algebraic data types. In: Proceedings of POPL 2011, pp. 587–598 (2011)Google Scholar
  18. 18.
    Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Turner, R.: An infinite hierarchy of term languages - an approach to mathematical complexity. In: Proceedings of ICALP, pp. 593–608 (1972)Google Scholar
  20. 20.
    Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Manes, E.G. (ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25, pp. 209–213. Springer, Heidelberg (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Naoki Kobayashi
    • 1
  • Kazuhiro Inaba
    • 2
  • Takeshi Tsukada
    • 3
    • 4
  1. 1.The University of TokyoJapan
  2. 2.Google Inc.USA
  3. 3.University of OxfordUK
  4. 4.JSPS Postdoctoral Fellow for Research AbroadJapan

Personalised recommendations