Family-Based Performance Analysis of Variant-Rich Software Systems

  • Matthias Kowal
  • Ina Schaefer
  • Mirco Tribastone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8411)


We study models of software systems with variants that stem from a specific choice of configuration parameters with a direct impact on performance properties. Using UML activity diagrams with quantitative annotations, we model such systems as a product line. The efficiency of a product-based evaluation is typically low because each product must be analyzed in isolation, making difficult the re-use of computations across variants. Here, we propose a family-based approach based on symbolic computation. A numerical assessment on large activity diagrams shows that this approach can be up to three orders of magnitude faster than product-based analysis in large models, thus enabling computationally efficient explorations of large parameter spaces.


Model Check Core Model Activity Diagram Software Product Line Symbolic Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Govil, M.K., Fu, M.C.: Queueing theory in manufacturing: A survey. Journal of Manufacturing Systems 18(3), 214–240 (1999)CrossRefGoogle Scholar
  2. 2.
    Singh, R., Shenoy, P., Natu, M., Sadaphal, V., Vin, H.: Predico: A System for What-if Analysis in Complex Data Center Applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 123–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Huhns, M., Singh, M.: Service-oriented computing: key concepts and principles. IEEE Internet Computing 9(1), 75–81 (2005)CrossRefGoogle Scholar
  4. 4.
    Vogel-Heuser, B., Witsch, D., Katzke, U.: Automatic code generation from a UML model to IEC 61131-3 and system configuration tools. In: ICCA, pp. 1034–1039 (2005)Google Scholar
  5. 5.
    Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: A survey. IEEE Trans. Software Eng. 30(5), 295–310 (2004)CrossRefGoogle Scholar
  6. 6.
    Petriu, D.C., Shen, H.: Applying the UML performance profile: Graph grammar-based derivation of LQN models from UML specifications. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Balsamo, S., Marzolla, M.: Performance evaluation of UML software architectures with multiclass queueing network models. In: WOSP, pp. 37–42 (2005)Google Scholar
  8. 8.
    López-Grao, J.P., Merseguer, J., Campos, J.: From UML activity diagrams to stochastic Petri nets: application to software performance engineering. SIGSOFT Softw. Eng. Notes 29(1), 25–36 (2004)CrossRefGoogle Scholar
  9. 9.
    Schaefer, I.: Variability modelling for model-driven development of software product lines. In: VaMoS, pp. 85–92 (2010)Google Scholar
  10. 10.
    Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-oriented architectural variability using monticore. In: ECSA, pp. 6:1–6:10 (2011)Google Scholar
  11. 11.
    Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented programming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    von Rhein, A., Apel, S., Kästner, C., Thüm, T., Schaefer, I.: The PLA model: on the combination of product-line analyses. In: VaMoS, pp. 14:1–14:8 (2013)Google Scholar
  13. 13.
    Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product lines. ASE 17(3), 251–300 (2010)Google Scholar
  14. 14.
    Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composition. In: FOAL, pp. 31–35. ACM (2009)Google Scholar
  15. 15.
    Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking lots of systems: Efficient verification of temporal properties in software product lines. In: ICSE. IEEE (2010)Google Scholar
  17. 17.
    Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product line engineering. In: ASE, 269–280 (2009)Google Scholar
  18. 18.
    Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Deontic logics for modeling behavioural variability. In: VaMoS, Essen, Germany, pp. 71–76 (January 2009)Google Scholar
  19. 19.
    Ghezzi, C., Sharifloo, A.M.: Verifying non-functional properties of software product lines: Towards an efficient approach using parametric model checking. In: SPLC, pp. 170–174 (2011)Google Scholar
  20. 20.
    Tawhid, R., Petriu, D.C.: Towards automatic derivation of a product performance model from a UML software product line model. In: WOSP, pp. 91–102 (2008)Google Scholar
  21. 21.
    Tawhid, R., Petriu, D.C.: Automatic derivation of a product performance model from a software product line model. In: SPLC, pp. 80–89 (2011)Google Scholar
  22. 22.
    Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced modeling and solution of layered queueing networks. IEEE Trans. Software Eng. 35(2), 148–161 (2009)CrossRefGoogle Scholar
  23. 23.
    Object Management Group: UML Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE). Beta 1. OMG, OMG document number ptc/07-08-04 (2007)Google Scholar
  24. 24.
    Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: WOSP, pp. 67–78 (2008)Google Scholar
  25. 25.
    D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict the performance of composite services. In: WOSP, pp. 78–89 (2007)Google Scholar
  26. 26.
    Menascé, D., Dubey, V.: Utility-based QoS brokering in service oriented architectures. In: ICWS, pp. 422–430 (July 2007)Google Scholar
  27. 27.
    Marzolla, M., Mirandola, R.: Performance prediction of web service workflows. In: Overhage, S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 127–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Jackson, J.R.: Jobshop-like queueing systems. Management Science 10(1), 131–142 (1963)CrossRefGoogle Scholar
  29. 29.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press (2009)Google Scholar
  30. 30.
    Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: ICSE, pp. 341–350 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthias Kowal
    • 1
  • Ina Schaefer
    • 1
  • Mirco Tribastone
    • 2
  1. 1.Technische Universität BraunschweigGermany
  2. 2.University of SouthamptonUnited Kingdom

Personalised recommendations