Modularizing Triple Graph Grammars Using Rule Refinement

  • Anthony Anjorin
  • Karsten Saller
  • Malte Lochau
  • Andy Schürr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8411)


Model transformation plays a central role in Model-Driven Engineering. In application scenarios such as tool integration or view specification, bidirectionality is a crucial requirement. Triple Graph Grammars (TGGs) are a formally founded, bidirectional transformation language, which has been used successfully in various case studies from different applications domains.

In practice, supporting the maintainability of TGGs is a current challenge and existing modularity concepts, e.g., to avoid pattern duplication in TGG rules, are still inadequate. Existing TGG tools either provide no support at all for modularity, or provide limited support with restrictions that are often not applicable.

In this paper, we present and formalize a novel modularity concept for TGGs: Rule refinement, which generalizes existing modularity concepts, solves the problem of pattern duplication, and enables concise, maintainable specifications.


model transformation triple graph grammars modularity 


  1. 1.
    Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques. In: Hermann, F., Voigtländer, J. (eds.) BX 2012. ECEASST, vol. 49. EASST (2012)Google Scholar
  2. 2.
    Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel Independence of Amalgamated Graph Transformations Applied to Model Transformation. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirectional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2006)Google Scholar
  5. 5.
    Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transformation of Sequence Diagram Specifications to Timed Game Automata. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and Expanding Graph Transformation Rules for Refactoring. In: ENTCS, vol. 152, pp. 53–67 (2006)Google Scholar
  7. 7.
    Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Crnkovic, I., Bertolino, A. (eds.) FSE 2007, pp. 285–294, No. 594074. ACM (2007)Google Scholar
  8. 8.
    Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Varró, G., Deckwerth, F.: A Rete Network Construction Algorithm for Incremental Pattern Matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 125–140. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Wimmer, M., et al.: A Comparison of Rule Inheritance in Model-to-Model Transformation Languages. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 31–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anthony Anjorin
    • 1
  • Karsten Saller
    • 1
  • Malte Lochau
    • 1
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtGermany

Personalised recommendations