Advertisement

Target Oriented Relational Model Finding

  • Alcino Cunha
  • Nuno Macedo
  • Tiago Guimarães
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8411)

Abstract

Model finders are becoming useful in many software engineering problems. Kodkod [19] is one of the most popular, due to its support for relational logic (a combination of first order logic with relational algebra operators and transitive closure), allowing a simpler specification of constraints, and support for partial instances, allowing the specification of a priori (exact, but potentially partial) knowledge about a problem’s solution. However, in some software engineering problems, such as model repair or bidirectional model transformation, knowledge about the solution is not exact, but instead there is a known target that the solution should approximate. In this paper we extend Kodkod’s partial instances to allow the specification of such targets, and show how its model finding procedure can be adapted to support them (using both PMax-SAT solvers or SAT solvers with cardinality constraints). Two case studies are also presented, including a careful performance evaluation to assess the effectiveness of the proposed extension.

Keywords

Transitive Closure Cardinality Constraint Model Repair Partial Instance Graph Edit Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for partial MAXSAT. In: AAAI 1997, pp. 263–268. AAAI (1997)Google Scholar
  3. 3.
    Czarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: FSE 2004, pp. 189–199. ACM (2004)Google Scholar
  5. 5.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis, revised edn. MIT Press (2012)Google Scholar
  7. 7.
    Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations using Alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 297–311. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with Echo. In: ASE 2013, pp. 694–697. IEEE (2013)Google Scholar
  9. 9.
    Maglalang, J.C.: Native cardinality constraints: More expressive, more efficient constraints. Honors Projects, Paper 19. Illinois Wesleyan University (2012)Google Scholar
  10. 10.
    Milicevic, A., Jackson, D.: Preventing arithmetic overflows in Alloy. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 108–121. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial optimization problems. In: CODAS 1996, pp. 448–454 (1996)Google Scholar
  12. 12.
    Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum: principled scenario exploration through minimality. In: ICSE 2013, pp. 232–241. IEEE (2013)Google Scholar
  13. 13.
    OMG: MOF 2.0 Query/View/Transformation specification (QVT), version 1.1 (January 2011), http://www.omg.org/spec/QVT/1.1/
  14. 14.
    Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in design models. In: ASE 2012, pp. 220–229. ACM (2012)Google Scholar
  15. 15.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Van Der Straeten, R., Pinna Puissant, J., Mens, T.: Assessing the Kodkod Model Finder for Resolving Model Inconsistencies. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Torlak, E., Jackson, D.: The design of a relational engine. Tech. Rep. MIT-CSAIL-TR-2006-068, MIT (2006)Google Scholar
  19. 19.
    Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range fixes for software configuration. In: ICSE 2012, pp. 58–68. IEEE (2012)Google Scholar
  21. 21.
    Nokhbeh Zaeem, R., Khurshid, S.: Contract-based data structure repair using Alloy. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alcino Cunha
    • 1
  • Nuno Macedo
    • 1
  • Tiago Guimarães
    • 1
  1. 1.HASLab — High Assurance Software Laboratory, INESC TECUniversidade do MinhoBragaPortugal

Personalised recommendations