Domain-Driven News Representation Using Conditional Attribute-Value Pairs

  • Mihail Minev
  • Christoph Schommer

Abstract

Financial news carry information about economical figures and indicators. However, these texts are mostly unstructured and consequently hard to be processed in an automatic way. In this paper, we present a representation formalism that supports a linguistic composition for machine learning tasks. We show an innovative approach to structuring financial texts by extracting principal indicators. Considering announcements in the monetary policy domain, we distinguish between attributes and their values and argue that attributes are to be represented as an aggregated set of economic terms, keeping their values as corresponding conditional expressions. We close with a critical discussion and future perspectives.

Keywords

Feature Extraction Text Representation Financial News 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bernanke, B.S., Kuttner, K.N.: What explains the stock market’s reaction to federal reserve policy? Working Paper 10402. National Bureau of Economic Research (April 2004)Google Scholar
  3. 3.
    Radford, A.: English Syntax: An Introduction. Cambridge University Press (May 2004)Google Scholar
  4. 4.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefMATHGoogle Scholar
  5. 5.
    Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Language models for financial news recommendation, pp. 389–396 (2000)Google Scholar
  6. 6.
    Gidófalvi, G., Elkan, C.: Using news articles to predict stock price movements. Technical report, Department of Computer Science and Engineering, University of California (2003)Google Scholar
  7. 7.
    Fengxi, S., Liu, S., Yang, J.: A comparative study on text representation schemes in text categorization. Pattern Anal. Appl. 8(1), 199–209 (2005)MathSciNetGoogle Scholar
  8. 8.
    Scott, S., Matwin, S.: Feature engineering for text classification. In: Proceedings of ICML 1999, 16th International Conference on Machine Learning, pp. 379–388. Morgan Kaufmann Publishers (1999)Google Scholar
  9. 9.
    Frantzi, T.K., Ananiadou, S.: Automatic term recognition using contextual cues. In: Proceedings of 3rd DELOS Workshop (1997)Google Scholar
  10. 10.
    Sager, J.C., Dungworth, D., McDonald, P.F.: English special languages: principles and practice in science and technology. Brandstetter (1980)Google Scholar
  11. 11.
    Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J., Spiteri, R.: Document representation and dimension reduction for text clustering. In: ICDE Workshops, pp. 770–779 (2007)Google Scholar
  12. 12.
    Radford, A.: Syntactic Theory and the Structure of English: A Minimalist Approach (Cambridge Textbooks in Linguistics). Cambridge University Press (August 1997)Google Scholar
  13. 13.
    Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Trans. Inf. Syst. 27(2) (2009)Google Scholar
  14. 14.
    Hagenau, M., Liebmann, M., Hedwig, M., Neumann, D.: Automated news reading: Stock price prediction based on financial news using context-specific features. In: Hawaii International Conference on System Sciences, pp. 1040–1049 (2012)Google Scholar
  15. 15.
  16. 16.
    Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python, 1st edn. O’Reilly Media (July 2009)Google Scholar
  17. 17.
    Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: The penn treebank. Computational Linguistics 19(2), 313–330 (1993)Google Scholar
  18. 18.
    Schwarzschild, R.: The role of dimensions in the syntax of noun phrases. Syntax 9(1), 67–110 (2006)CrossRefGoogle Scholar
  19. 19.
    Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Terminology extraction: An analysis of linguistic and statistical approaches. In: Sirmakessis, S. (ed.) Knowledge Mining. STUDFUZZ, vol. 185, pp. 255–279. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: the c-value/nc-value method. Int. J. on Digital Libraries 3(2), 115–130 (2000)CrossRefGoogle Scholar
  21. 21.
    Java Automatic Term Extraction toolkit, http://code.google.com/p/jatetoolkit/wiki/JATEIntro
  22. 22.
    Apache OpenNLP library, http://opennlp.apache.org/
  23. 23.
  24. 24.
    Li, X.: Understanding the semantic structure of noun phrase queries. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL 2010, pp. 1337–1345. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  25. 25.
    Milios, E., Zhang, Y., He, B., Dong, L.: Automatic Term Extraction and Document Similarity in Special Text Corpora, pp. 275–284 (August 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mihail Minev
    • 1
  • Christoph Schommer
    • 1
  1. 1.Interdisciplinary Lab for Intelligent and Adaptive Systems, Computer Science and Communications Research UnitUniversity of LuxembourgLuxembourg

Personalised recommendations