Brief Introduction to Localized Surface Plasmon Resonance and Correlative Devices

Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Novel metal nanoparticles with localized surface plasmon resonance (LSPR) have excellent optical and physical properties including strong absorption and scattering spectroscopy, photostability, and active catalytic ability. These properties enable them to be applied in variable sensitive sensors, functional nanoprobes and act as efficient catalysts. Particularly, the measurements at single nanoparticle level promote the developments of plasmonics, even to single molecule level detection. In this chapter, we briefly introduce the fundamentals and applications of the LSPR property of metal nanoparticles, and the useful devices for the investigation of single plasmonics.

Keywords

Localized surface plasmon resonance Medium sensitivity Morphology of nanoparticles Charge separation Coupling of plasmonics Electrochemistry Cell imaging Dark-field microscopy Lasers 

References

  1. 1.
    Li Y, Jing C, Zhang L, Long Y-T (2012) Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem Soc Rev 41:632–642CrossRefGoogle Scholar
  2. 2.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA et al (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  3. 3.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  4. 4.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  5. 5.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118CrossRefGoogle Scholar
  6. 6.
    Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36CrossRefGoogle Scholar
  7. 7.
    Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP (2009) Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C 113:16839–16842CrossRefGoogle Scholar
  8. 8.
    Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930CrossRefGoogle Scholar
  9. 9.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251CrossRefGoogle Scholar
  10. 10.
    Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci 107:10837–10841CrossRefGoogle Scholar
  11. 11.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  12. 12.
    Chang W-S, Willingham B, Slaughter LS, Dominguez-Medina S, Swanglap P, Link S (2012) Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Acc Chem Res 45:1936–1945CrossRefGoogle Scholar
  13. 13.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910CrossRefGoogle Scholar
  14. 14.
    Szunerits S, Boukherroub R (2012) Sensing using localized surface plasmon resonance sensors. Chem Commun 48:8999–9010CrossRefGoogle Scholar
  15. 15.
    Maye MM, Luo J, Han L, Kariuki NN, Zhong C-J (2003) Synthesis, processing, assembly and activation of core–shell structured gold nanoparticle catalysts. Gold Bull 36:75–82CrossRefGoogle Scholar
  16. 16.
    Alkilany AM, Lohse SE, Murphy CJ (2012) The gold standard: gold nanoparticle libraries to understand the nano–bio interface. Acc Chem Res 46:650–661CrossRefGoogle Scholar
  17. 17.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  18. 18.
    Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40:3391–3404CrossRefGoogle Scholar
  19. 19.
    Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33CrossRefGoogle Scholar
  20. 20.
    Ling J, Huang CZ (2010) Energy transfer with gold nanoparticles for analytical applications in the fields of biochemical and pharmaceutical sciences. Anal Methods 2:1439–1447CrossRefGoogle Scholar
  21. 21.
    Novo C, Funston AM, Gooding AK, Mulvaney P (2009) Electrochemical charging of single gold nanorods. J Am Chem Soc 131:14664–14666 Google Scholar
  22. 22.
    Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  23. 23.
    Augspurger AE, Stender AS, Han R, Fang N (2014) Detecting plasmon resonance energy transfer with differential interference contrast microscopy. Anal Chem 86:1196–1201 CrossRefGoogle Scholar
  24. 24.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  25. 25.
    Otte MA, Sepúlveda B, Ni W, Juste JP, Liz-Marzán LM, Lechuga LM (2009) Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano 4:349–357CrossRefGoogle Scholar
  26. 26.
    Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S et al (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18:1949–1960CrossRefGoogle Scholar
  27. 27.
    Xiao L, Wei L, Cheng X, He Y, Yeung ES (2011) Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal Chem 83:7340–7347CrossRefGoogle Scholar
  28. 28.
    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci 100:11350–11355CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials and Department of ChemistryEast China University of Science and TechnologyShanghaiChina

Personalised recommendations