Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty

  • Kristian BrediesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8293)


We study and extend the recently introduced total generalized variation (TGV) functional for multichannel images. This functional has already been established to constitute a well-suited convex model for piecewise smooth scalar images. It comprises exactly the functions of bounded variation but is, unlike purely total-variation based functionals, also aware of higher-order smoothness. For the multichannel version which is developed in this paper, basic properties and existence of minimizers for associated variational problems regularized with second-order TGV is shown. Furthermore, we address the design of numerical solution methods for the minimization of functionals with TGV\(^2\) penalty and present, in particular, a class of primal-dual algorithms. Finally, the concrete realization for various image processing problems, such as image denoising, deblurring, zooming, dequantization and compressive imaging, are discussed and numerical experiments are presented.


Total generalized variation Multichannel images Primal-dual algorithms Image denoising Image deblurring Zooming Dequantization Compressive imaging 



Support by the Austrian Science Fund (FWF) under grant SFB F32 (SFB “Mathematical Optimization and Applications in Biomedical Sciences”) is gratefully acknowledged.


  1. 1.
    Alberti, G., Bouchitté, G., Maso, D.D.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bredies, K., Dong, Y., Hintermüller, M.: Spatially dependent regularization parameter selection in total generalized variation models for image restoration. Int. J. Comput. Math. 90(1), 109–123 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bredies, K., Holler, M.: A total variation-based JPEG decompression model. SIAM J. Imaging Sci. 5(1), 366–393 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011, 9th International Conference on Sampling Theory and Applications (2011)Google Scholar
  6. 6.
    Bredies, K., Holler, M.: Artifact-free JPEG decompression with total generalized variation. In: VISAPP 2012: Proceedings of the International Conference on Computer Vision Theory and Applications (2012)Google Scholar
  7. 7.
    Bresson, X., Chan, T.F.C.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chan, T.F., Esedoglu, S., Park, F.E.: Image decomposition combining staircase reduction and texture extraction. J. Visual Commun. Image Represent. 18(6), 464–486 (2007)CrossRefGoogle Scholar
  11. 11.
    Dong, Y., Hintermüller, M., Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 82–104 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag. 25(2), 83–91 (2008)CrossRefGoogle Scholar
  13. 13.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76, 109–133 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    \(\hat{}\) @ \(\hat{}\) ina@Flickr: Alina’s eye. Licenced under CreativeCommons-by-2.0 ( (2009)
  16. 16.
    Klöckner, A.: PyCUDA 2011.2.2.
  17. 17.
    Kubina, J.: Bubble popper. Licenced under CreativeCommons-by-sa-2.0 ( (2005)
  18. 18.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    NIVIDA Corporation: CUDA toolkit 4.0.
  23. 23.
    Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. ArXiv e-print 1202.6341 (2012)Google Scholar
  24. 24.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE 12th International Conference on Computer Vision (ICCV). pp. 1133–1140 (2009)Google Scholar
  25. 25.
    Python Software Foundation: Python programming language 2.6.
  26. 26.
    Rice Single-Pixel Camera Project: CS camera data.
  27. 27.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  29. 29.
    Schristia@Flickr: 1, 2, 3. Licenced under CreativeCommons-by-2.0 ( (2009)
  30. 30.
    Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Steve-h@Flickr: Wet green smiles. Licenced under CreativeCommons-by-sa-2.0 ( (2009)
  32. 32.
    Steve-h@Flickr: Oak leaves and bokeh. Licenced under CreativeCommons-by-sa-2.0 ( (2012)
  33. 33.
    Temam, R.: Mathematical Problems in Plasticity. Bordas, Paris (1985)Google Scholar
  34. 34.
    The Scipy Community: Scientific tools for Python.
  35. 35.
    Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Opt. 44, 131–161 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Num. 34(4), 799–810 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations