AC Losses and Material Degradation Effects in a Superconducting Tape for SMES Applications

  • Nuno Amaro
  • Ján Šouc
  • Michal Vojenčiak
  • João Murta Pina
  • João Martins
  • J. M. Ceballos
  • Fedor Gömöry
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)

Abstract

Superconducting Magnetic Energy Storage (SMES) systems are one potential application of superconductivity in electric grids. The main element of such systems is a coil, made from superconducting tape. Although SMES systems work in DC conditions, due to highly dynamic working regimes required for some applications, AC currents can appear in the coil. It is then of utmost importance to verify the magnitude of these AC currents and take into account AC losses generated on the tape in the design phase of such system. To assure a proper operation, it is also necessary to know tape characteristics during the device lifetime, which in normal operation conditions can be of decades. Continuous thermal cycles and mechanical stresses to which the tape is subjected can change its characteristics, changing important quantities like critical current (IC) and n-value. It is then also necessary to evaluate tape degradation due to these conditions. A study of AC losses will be here presented, for a short sample of BSCCO tape. IC and n-value degradation due to consecutive thermal cycles will also be studied.

Keywords

Superconducting Magnetic Energy Storage SMES AC losses HTS tape degradation 

References

  1. 1.
    Amaro, N., Murta Pina, J., Martins, J., Ceballos, J.M.: Superconducting Magnetic Energy Storage - A Technological Contribute to Smart Grid Concept Implementation. In: Proceedings of the 1st International Conference on Smart Grids and Green IT Systems, pp. 113–120. SciTePress - Science and and Technology Publications (2012)Google Scholar
  2. 2.
    Eurelectric: Power Quality in European Electricity Supply Network, Brussels (2003).Google Scholar
  3. 3.
    Xu, Y., Tang, Y., Ren, L., Jiao, F., Song, M., Cao, K., Wang, D., Wang, L., Dong, H.: Distribution of AC loss in a HTS magnet for SMES with different operating conditions. Phys. C Supercond. 494, 213–216 (2013)CrossRefGoogle Scholar
  4. 4.
    Ashworth, S.P.: Measurements of AC losses due to transport currents in bismuth superconductors. Phys. C Supercond. 229, 355–360 (1994)CrossRefGoogle Scholar
  5. 5.
    Gömöry, F., Bettinelli, D., Gherardi, L., Crotti, G.: Magnetic measurement of transport AC losses in Bi-2223/Ag tapes. Phys. C Supercond. 310, 48–51 (1998)CrossRefGoogle Scholar
  6. 6.
    Šouc, J., Pardo, E., Vojenčiak, M., Gömöry, F.: Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Supercond. Sci. Technol. 22, 15006 (2009)CrossRefGoogle Scholar
  7. 7.
    Yuan, J., Fang, J., Qu, P., Shen, G.X., Han, Z.-H.: Study of frequency dependent AC loss in Bi-2223 tapes used for gradient coils in magnetic resonance imaging. Phys. C Supercond. 424, 72–78 (2005)CrossRefGoogle Scholar
  8. 8.
    Rhyner, J.: Magnetic properties and AC-losses of superconductors with power law current—voltage characteristics. Phys. C Supercond. 212, 292–300 (1993)CrossRefGoogle Scholar
  9. 9.
    Kim, H.-J., Kim, J.H., Cho, J.W., Sim, K.D., Kim, S., Oh, S.S., Kwag, D.S., Kim, H.J., Bae, J.H., Seong, K.C.: AC loss characteristics of Bi-2223 HTS tapes under bending. Phys. C Supercond. 445–448, 768–771 (2006)Google Scholar
  10. 10.
    Polák, M., Kvitkovic, J., Janšák, L., Mozola, P.: The effect of epoxy impregnation on the behaviour of a Bi-2223/Ag coil carrying DC or AC current. Supercond. Sci. Technol. 19, 256–262 (2006)CrossRefGoogle Scholar
  11. 11.
    Chen, D.-X., Luo, X.-M., Fang, J.-G., Han, Z.-H.: Frequency dependent AC loss in degraded Bi-2223/Ag tape. Phys. C Supercond. 391, 75–78 (2003)CrossRefGoogle Scholar
  12. 12.
    E.U., E. union: European SmartGrids Technology Platform - Vision and Strategy for Europe’s Electricity Networks of the Future. Office for Official Publications of the European Communities, Brussels (2006).Google Scholar
  13. 13.
    Stavrev, S., Dutoit, B.: Frequency dependence of AC loss in Bi(2223)Ag-sheathed tapes. Phys. C Supercond. 310, 86–89 (1998)CrossRefGoogle Scholar
  14. 14.
    Norris, W.T.: Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets. J. Phys. D. Appl. Phys. 3, 489–507 (1970)CrossRefGoogle Scholar
  15. 15.
    Ishii, H., Hirano, S., Hara, T., Fujikami, J., Sato, K.: The a.c. losses in (Bi,Pb)2Sr2Ca2Cu3Ox silver-sheathed superconducting wires. Cryogenics (Guildf) 36, 697–703 (1996)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Nuno Amaro
    • 1
  • Ján Šouc
    • 2
  • Michal Vojenčiak
    • 2
  • João Murta Pina
    • 1
  • João Martins
    • 1
  • J. M. Ceballos
    • 3
  • Fedor Gömöry
    • 2
  1. 1.Centre of Technology and Systems, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.“Benito Mahedero” Group of Electrical Applications of Superconductors, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain

Personalised recommendations