Polarization-Induced False Colours

Chapter
Part of the Springer Series in Vision Research book series (SSVR, volume 2)

Abstract

If the photoreceptors of a colour vision system are polarization sensitive, the system detects polarization-induced false colours. It has been hypothesized that egg-laying Papilio butterflies could use these polarizational colours as a cue to detect leaf orientation and to discriminate between shiny and matte leaves. In this chapter, we show that a shiny green surface with any orientation can possess almost any polarizational false colour under any illumination condition (for different solar elevations and directions of view with respect to the solar azimuth as well as for sunlit and shady circumstances under clear skies). Consequently, polarizational colours cannot unambiguously code surface orientation. Polarization sensitivity is even disadvantageous for the detection of surface orientation by means of colours. On the other hand, the colour changes due to retinal rotation can be significantly larger for shiny surfaces than for matte ones. Thus, polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matte surfaces. Earlier it has been believed that a uniformly polarization-sensitive retina (UPSR)—in which receptors of all spectral types have the same polarization sensitivity ratio and microvilli direction—cannot detect polarization-induced false colours. Here we show that, contrary to this belief, a colour vision based on a UPSR is subject to polarization-related artefacts, because both the degree and the angle of polarization of light reflected from natural surfaces depend on wavelength. These findings are of general importance for polarization-dependent colour vision systems.

Supplementary material

71484_2_En_13_MOESM1_ESM.zip (7.5 mb)
Video Clip 13.1This film demonstrates how a polarization-sensitive (left) and a polarization-blind (right) visual system would see the colours (upper row) and brightness (intensity) plus colours (middle row) of a scenery (a shiny black beetle on shiny green leaves illuminated by blue skylight) when the animal is rotating its head. The orientation of the sysmmetry axis of the head is shown by a red bar. In the middle of the lower row the equilateral colour triangle is seen. At right and left in the lower row the distributions of real colours (perceived by the polarization-blind retina) and polarization-induced false colours (perceived by the polarization-sensitive retina), respectively, are shown in the colour triangle. Using the reflection-polarization patterns of the scene measured by imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) spectral ranges, the polarizational false colours were computed as described by Horváth et al. (2002) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 12353 kb)
71484_2_En_13_MOESM2_ESM.zip (9.1 mb)
Video Clip 13.2As Video Clip 13.1 for matte red flowers and shiny green leaves of a trumpet vine (Campsis radicans, Bigniniaceae) illuminated by blue skylight (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM3_ESM.zip (8.9 mb)
Video Clip 13.3As Video Clip 13.2 for a close-up view (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM4_ESM.zip (8.1 mb)
Video Clip 13.4As Video Clip 13.1 for matte red flowers and shiny green leaves of a trumpet vine (Campsis radicans) illuminated by direct sunlight (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM5_ESM.zip (7.4 mb)
Video Clip 13.5As Video Clip 13.1 for a matte red flower and a shiny green leaf of a trumpet vine (Campsis radicans) illuminated by skylight (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM6_ESM.zip (8.1 mb)
Video Clip 13.6As Video Clip 13.1 for a sunlit shiny red flower of a common poppy (Papaver rhoeas) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM7_ESM.zip (9.2 mb)
Video Clip 13.7As Video Clip 13.1 for a sunlit/shady white flower of a common hollyhock (Althaea rosea) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM8_ESM.zip (7.8 mb)
Video Clip 13.8As Video Clip 13.7 for a close-up view (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM9_ESM.zip (7.6 mb)
Video Clip 13.9As Video Clip 13.1 for a shady shiny white flower of a white campion (Melandrium album) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM10_ESM.zip (8.6 mb)
Video Clip 13.10As Video Clip 13.1 for sunlit/shady shiny green grass leaves (Poaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM11_ESM.zip (7.7 mb)
Video Clip 13.11As Video Clip 13.1 for shady/sunlit shiny green leaves of a sunflower (Helianthus annuus) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM12_ESM.zip (7.8 mb)
Video Clip 13.12As Video Clip 13.1 for a sunlit shiny green leaf of a sunflower (Helianthus annuus) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM13_ESM.zip (8.1 mb)
Video Clip 13.13As Video Clip 13.1 for sunlit shiny green leaves and shiny red berries of a rowan (Sorbus sp., Rosaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM14_ESM.zip (7.2 mb)
Video Clip 13.14As Video Clip 13.1 for a collection of shady and shiny fruits and vegetables of different colours: white fennel root, ochre orange, red tomato, red paprika, red pepper, yellow paprika, green pepper, green avocado, violet eggplant (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM15_ESM.zip (7.2 mb)
Video Clip 13.15As Video Clip 13.1 for a collection of sunlit and shiny fruits and vegetables of different colours: white fennel root, ochre orange, red tomato, red paprika, red pepper, yellow paprika, green pepper, green avocado, violet eggplant (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM16_ESM.zip (7.7 mb)
Video Clip 13.16As Video Clip 13.1 for a shiny red spathe and shiny green leaves of a shady golden pothos (Epipremnum aureum) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM17_ESM.zip (8.2 mb)
Video Clip 13.17As Video Clip 13.1 for sunlit/shady shiny reddish leaves of a tree (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM18_ESM.zip (7.8 mb)
Video Clip 13.18As Video Clip 13.1 for a shady dark violet flower of an orchid (Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM19_ESM.zip (8.3 mb)
Video Clip 13.19As Video Clip 13.1 for a shady yellow flower of an orchid (Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM20_ESM.zip (5.9 mb)
Video Clip 13.20As Video Clip 13.1 for a shady matte violet flower of an orchid (Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM21_ESM.zip (8.7 mb)
Video Clip 13.21As Video Clip 13.18 for another viewing direction (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM22_ESM.zip (9.3 mb)
Video Clip 13.22As Video Clip 13.1 for a shady flower of an early spider orchid (Ophrys sphegodes, Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM23_ESM.zip (9.1 mb)
Video Clip 13.23As Video Clip 13.1 for two shady flowers of an early spider orchid (Ophrys sphegodes, Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM24_ESM.zip (9 mb)
Video Clip 13.24As Video Clip 13.23 for another viewing direction (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM25_ESM.zip (6.1 mb)
Video Clip 13.25As Video Clip 13.1 for a shady flower of an early spider orchid (Ophrys sphegodes, Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM26_ESM.zip (6.8 mb)
Video Clip 13.26As Video Clip 13.1 for two shady flowers of an early spider orchid (Ophrys sphegodes, Orchidaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 15395 kb)
71484_2_En_13_MOESM27_ESM.zip (8.5 mb)
Video Clip 13.27As Video Clip 13.1 for a shady bromeliad (Bromeliaceae) with shiny red and green leaves (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM28_ESM.zip (8.4 mb)
Video Clip 13.28As Video Clip 13.1 for shiny red-white spathes of a shady bromeliad (Bromeliaceae) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)
71484_2_En_13_MOESM29_ESM.zip (7.4 mb)
Video Clip 13.29As Video Clip 13.1 for a sunlit/shady matte blue flower of a chicory or endive (Cichorium intybus) (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14968 kb)

References

  1. Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vis Res 17:1019–1028PubMedCrossRefGoogle Scholar
  2. Hegedüs R, Horváth G (2004a) Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation. Vis Res 44:2337–2348PubMedCrossRefGoogle Scholar
  3. Hegedüs R, Horváth G (2004b) How and why are uniformly polarization-sensitive retinae subject to polarization-related artefacts? Correction of some errors in the theory of polarization-induced false colours. J Theor Biol 230:77–87PubMedCrossRefGoogle Scholar
  4. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, HeidelbergCrossRefGoogle Scholar
  5. Horváth G, Gál J, Labhart T, Wehner R (2002) Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. J Exp Biol 205:3281–3298PubMedGoogle Scholar
  6. Kelber A (1999) Why ‘false’ colours are seen by butterflies. Nature 402:251PubMedCrossRefGoogle Scholar
  7. Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480PubMedGoogle Scholar
  8. Neumeyer C (1991) Evolution of colour vision. In: Cronly-Dillon JR, Gregory RL (eds) Vision and visual dysfunction, vol 2, Evolution of the eye and visual system. MacMillan, London, pp 285–305Google Scholar
  9. Umow N (1905) Chromatische Depolarisation durch Lichtzerstreuung. Physikalische Zeitschrift 6:674–676Google Scholar
  10. Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 90:4132–4135PubMedCrossRefPubMedCentralGoogle Scholar
  11. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Environmental Optics Laboratory, Department of Biological Physics, Physical InstituteEötvös UniversityBudapestHungary
  2. 2.Max Planck Institute for InformaticsSaarbrueckenGermany
  3. 3.INRIA Sud-Ouest BordeauxTalenceFrance
  4. 4.Laboratoire Photonique, Numérique et Nanosciences (L2PN), UMR 5298CNRS IOGS University Bordeaux, Institut d’Optique d’AquitaineTalenceFrance

Personalised recommendations