Polarization Sensitivity in Amphibians

  • Victor Benno Meyer-Rochow
Part of the Springer Series in Vision Research book series (SSVR, volume 2)


Polarization sensitivity (PS) in amphibians has been examined in some species of anurans and urodelans. Gymnophiones, on account of their tiny eyes and fossorial or aquatic lifestyles, are considered unlikely candidates for PS. Some anura and urodela have been shown to detect the direction of polarization with photoreceptors of the pineal organ rather than their lateral eyes. An ordered array of light-absorbing visual molecules is paramount for PS, but an ordered array of radical pairs generated through photo-induced electron transfer is also essential for magnetoreception, which suggests that there is some interaction between the two senses. An anatomical requirement for PS is a constant and characteristic orientation of the photoreceptor’s disc membranes. A closer look at ultrastructural modifications in different retinal regions of species deemed polarization sensitive seems warranted. Polarization sensitivity may help to relocate breeding sites in philotropic species and to improve visibility of prey in predatory larval and adult urodeles plus those few anurans that hunt under water. Furthermore, it could possibly be of assistance in separating overlapping shadows and play a role during courtship in species with distinct sexually dimorphic colouration.


Pineal Organ Polarization Sensitivity Tiger Salamander Frontal Organ Selective Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I wish to thank Prof. Hong Yang Yan (Taiwan National Academy of Science) for valuable hints on relevant literature and President James Jin Kyung Kim of Pyongyang University of Science and Technology for his support and for allowing me time to complete this chapter during my sabbatical semester in North Korea (DPRK). I am grateful to Dr. Hans-Bert Schikora and Mr Dieter Florian for making available the photographs in Figs. 10.1 and 10.2 and furthermore to Prof. G. Horváth for inviting me to contribute this chapter to this book.


  1. Adler K, Taylor DH (1973) Extraocular perception of polarized light by orienting salamanders. J Comp Physiol 87:203–212CrossRefGoogle Scholar
  2. Auburn JS, Taylor DH (1979) Polarized light perception and orientation in larval bullfrogs Rana catesbeiana. Anim Behav 27:658–668CrossRefGoogle Scholar
  3. Badenhorst A (1978) The development and the phylogeny of the organ of Jacobson and the tentacular apparatus of Ichthyophis glutinosus (Linne). Ann Univ Stellenbosch Ser 2AI:1–26Google Scholar
  4. Callery EM, Fang H, Elinson RP (2001) Frogs without polliwogs: evolution of anuran direct development. BioEssays 23:233–241PubMedCrossRefGoogle Scholar
  5. Channing A, Howell KM (2006) Amphibians of East Africa. Cornell University Press, Ithaca, NYGoogle Scholar
  6. Corless JM (1986) A minimum diameter limit for retinal rod outer segment disks. In: Sheffield JB, Hilfer SR (eds) Development of order in the visual system. Springer, Heidelberg, pp 127–142CrossRefGoogle Scholar
  7. Daneri MF, Casaneve E (2011) Control of spatial orientation in terrestrial toads (Rhinella arenarum). J Comp Psychol 125:296–307PubMedCrossRefGoogle Scholar
  8. Daniolos A, Lerner AB, Lerner MR (1990) Action of light on frog pigment cells in culture. Pigment Cell Res 3:38–43PubMedCrossRefGoogle Scholar
  9. Demian JJ, Taylor DH (1977) Photoreception and locomotor rhythm entrainment by the pineal body of the newt Notophthalmus viridescens (Amphibia, Urodela, Salamandridae). J Herpetol 11:131–139CrossRefGoogle Scholar
  10. Deutschlander ME, Phillips JB (1995) Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum). Neurosci Lett 197:93–96PubMedCrossRefGoogle Scholar
  11. Durand J (1976) Ocular development and involution in the European cave salamander Proteus anguinus Laurenti. Biol Bull 151:450–466PubMedCrossRefGoogle Scholar
  12. Edmonds DT (1996) A sensitive optically-detected magnetic compass for animals. Proc R Soc Lond B 263:295–298CrossRefGoogle Scholar
  13. Ekström P, Meissl H (1997) The pineal organ of teleost fishes. Rev Fish Biol Fisher 7:199–284CrossRefGoogle Scholar
  14. Ferguson DE (1971) The sensory basis of orientation in amphibians. Ann N Y Acad Sci 188:30–36PubMedCrossRefGoogle Scholar
  15. Ferguson DE, Landreth HF (1966) Celestial orientation of Fowler’s toad, Bufo fowleri. Behaviour 26:105–123CrossRefGoogle Scholar
  16. Ferguson DE, McKeown JB, Bosarge OS, Landreth HF (1968) Sun-compass orientation of bullfrogs. Copeia 1968:230–235CrossRefGoogle Scholar
  17. Flamarique IN, Browman MI (2001) Foraging and prey-searching behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415–2422PubMedGoogle Scholar
  18. Flamarique IN, Hawryshyn CW (1998) Photoreceptor types and their relation to the spectral and polarization sensitivities of clupeid fishes. J Comp Physiol A 182:793–803CrossRefGoogle Scholar
  19. Foley EL, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356. doi: 10.1038/ncomms1364 PubMedCrossRefPubMedCentralGoogle Scholar
  20. Greven H (2003) Larviparity and pueriparity. In: Sever DM (ed) Reproductive biology and phlogeny of urodela. Science Publications, Enfield, Plymouth, pp 447–475Google Scholar
  21. Greven H, Richter S (2009) Morphology of skin incubation in Pipa carvalhoi (Anura; Pipidae). J Morphol 270:1311–1319PubMedCrossRefGoogle Scholar
  22. Hairston NGS (1994) Vertebrate zoology: an experimental field approach. Cambridge University Press, CambridgeGoogle Scholar
  23. Hárosi FI (1975) Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol 66:357–382PubMedCrossRefGoogle Scholar
  24. Hershey JL, Forester DC (1980) Sensory orientation in Notophthalmus v. viridescens (Amphibia; Salamandridae). Can J Zool 58:266–276CrossRefGoogle Scholar
  25. Himstedt W (1972) Untersuchungen zum Farbensehen von Urodelen. J Comp Physiol 81:229–238CrossRefGoogle Scholar
  26. Himstedt W (1979) The significance of color in partner recognition of the newt Triturus alpestris. Copeia 1979:43–47CrossRefGoogle Scholar
  27. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, HeidelbergCrossRefGoogle Scholar
  28. Justin CS, Taylor DH (1976) Extraocular photoreception and compass orientation in larval bullfrogs Rana catesbeiana. Copeia 1976:98–105CrossRefGoogle Scholar
  29. King JR, Conner CM (1996) Visually elicited turning behavior in Rana pipiens: comparative organization and neural control of escape and prey capture. J Comp Physiol A 178:293–305CrossRefGoogle Scholar
  30. Koskelainen A, Hemilä S, Donner K (1994) Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina. Acta Physiol Scand 152:115–124PubMedCrossRefGoogle Scholar
  31. Kunz YW, Wildenburg G, Goodrich L, Callaghan E (1994) The fate of ultraviolet receptors in the retina of the Atlantic salmon (Salmo salar). Vis Res 34:1375–1383PubMedCrossRefGoogle Scholar
  32. Landreth HF, Ferguson DE (1967) Newts: sun-compass orientation. Science 158:1459–1461PubMedCrossRefGoogle Scholar
  33. Lin S, Yemelyanov KM (2006) Separation and contrast enhancement of overlapping cast shadow components using polarization. Opt Express 14:7099–7107PubMedCrossRefGoogle Scholar
  34. Mariani AP (1986) Photoreceptors of the larval tiger salamander retina. Proc R Soc Lond B 227:483–492PubMedCrossRefGoogle Scholar
  35. Marshall J, Cronin TW (2011) Polarisation vision. Curr Biol 21:R101–R105PubMedCrossRefGoogle Scholar
  36. Meyer-Rochow VB, Coddington PE (2003) Eyes and vision of the New Zealand torrentfish Cheimarrichthys fosteri von Haast (1874): histology, photochemistry and electrophysiology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publications, Enfield, Plymouth, pp 337–381Google Scholar
  37. Meyer-Rochow VB, Morita Y, Tamotsu S (1999) Immunocytochemical observations of the pineal organ and retina of the Antarctic teleosts Pagothenia borchgrevinki and Trematomus bernacchii. J Neurocytol 28:125–130PubMedCrossRefGoogle Scholar
  38. Meyer-Rochow VB, Pehlemann FW (1990) Retinal organization in the native New Zealand frogs Leiopelma archeyi, L. hamiltoni, and L. hochstetteri (Amphibia: Anura; Leiopelmatidae). J Roy Soc NZ 20:349–366CrossRefGoogle Scholar
  39. Miyazaki T, Iwami I, Meyer-Rochow VB (2011) The position of the retinal area centralis changes with age in Champsocephalus gunnari (Channichthyidae), a predatory fish from coastal Antarctic waters. Polar Biol 34:117–1123Google Scholar
  40. Nilsson D, Warrant EJ (1999) Seeing the third quality of light. Curr Biol 9:R535–R537PubMedCrossRefGoogle Scholar
  41. Patrick DA, Calhoun AJK, Hunter ML (2007) Orientation of juvenile wood frogs, Rana sylvatica, leaving experimental ponds. J Herpetol 41:158–163CrossRefGoogle Scholar
  42. Perry RJ, McNoughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol 433:561–587PubMedPubMedCentralGoogle Scholar
  43. Phillips JB (1986) Magnetic compass orientation in the Eastern red spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109PubMedCrossRefGoogle Scholar
  44. Phillips JB (1998) Magnetoreception. In: Heatwole H (ed) Amphibian biology 3: sensory perception. Surrey Beatty & Sons Pty Ltd, Chipping Norton, pp 954–964Google Scholar
  45. Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552PubMedGoogle Scholar
  46. Przyrembel C, Keller B, Neumeyer C (1995) Trichromatic colour vision in the salamander (Salamandra salamandra). J Comp Physiol A 176:575–586CrossRefGoogle Scholar
  47. Reuter T (1969) Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria L.). Act Zool Fenn 122:1–64Google Scholar
  48. Ritz T, Dommer DH, Phillips JB (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506PubMedCrossRefGoogle Scholar
  49. Roberts NW, Gleeson HF (2004) The absorption of polarized light by vertebrate photoreceptors. Vis Res 44:2643–2652PubMedCrossRefGoogle Scholar
  50. Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc B 366:627–637CrossRefGoogle Scholar
  51. Röhlich P, Szel A (2000) Photoreceptor cells in the Xenopus retina. Microsc Res Tech 50:327–337PubMedCrossRefGoogle Scholar
  52. Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles. In: Bewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Heidelberg, pp 151–203CrossRefGoogle Scholar
  53. Sabbah S, Lerner A, Erlick C, Shashar N (2005) Underwater polarization vision—a physical examination. Recent Res Dev Exp Theor Biol 1:123–176Google Scholar
  54. Schmidt WJ (1938) Doppelbrechung, Dichroismus und Feinbau des Aussengliedes der Sehzellen vom Frosch. Z Zellforsch 22:485–522CrossRefGoogle Scholar
  55. Schulten K (1982) Magnetic field effects in chemistry and biology. Adv Solid State Phys 22:61–83CrossRefGoogle Scholar
  56. Schulten K, Swenberg C, Walter A (1978) A biomagnetic sensory mechanism based on magnetic field-modulated coherent electron spin motion. Z Phys Chem NF111:1–5CrossRefGoogle Scholar
  57. Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79CrossRefGoogle Scholar
  58. Sinsch U (2006) Orientation and navigation in amphibian. Mar Freshw Behav Physiol 39:65–71CrossRefGoogle Scholar
  59. Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, Princeton, NJGoogle Scholar
  60. Stone LS (1964) The structure and visual function of the eye of larval and adult cave salamanders Typhlotriton spelaeus. J Exp Zool 156:201–218PubMedCrossRefGoogle Scholar
  61. Sweeney A, Jiggins C, Johnsen S (2003) Polarized light as a butterfly mating signal. Nature 423:31PubMedCrossRefGoogle Scholar
  62. Taylor DH, Adler K (1978) The pineal body: site of extraocular perception of celestial cues for orientation in the tiger salamander (Ambystoma tigrinum). J Comp Physiol A 124:357–361CrossRefGoogle Scholar
  63. Taylor DH, Auburn JS (1978) Orientation of amphibians by linearly polarized light. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg, pp 334–346CrossRefGoogle Scholar
  64. Taylor DH, Ferguson DE (1970) Extraoptic celestial orientation in the southern cricket frog Acris gryllus. Science 168:390–392PubMedCrossRefGoogle Scholar
  65. Temple SE (2011) Why different regions of the retina have different spectral sensitivities: a review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis Neurosci 28:281–293PubMedCrossRefGoogle Scholar
  66. Timm BC, McGarigal K, Jenkins CL (2007) Emigration orientation of juvenile pond-breeding amphibians in western Massachusetts. Copeia 3:658–698Google Scholar
  67. Tsukamoto Y (1987) The number, depth and elongation of disc incisures in the retinal rod of Rana catesbeiana. Exp Eye Res 45:105–116PubMedCrossRefGoogle Scholar
  68. Vigh B, Vigh-Teichmann I (1986) Three types of photoreceptors in the pineal and frontal organs of frogs: ultrastructure and opsin immunoreactivity. Arch Histol Jap 49:495–518PubMedCrossRefGoogle Scholar
  69. Vigh B, Vigh-Teichmann I, Oksche A (1985) Sensory cells of the ‘rod’ and ‘cone’ type in the pineal organ of Rana esculenta as revealed by immunoreaction against opsin and by the presence of an oil (lipid) droplet. Cell Tissue Res 240:143–148PubMedCrossRefGoogle Scholar
  70. Vigh-Teichmann I, Vigh B (1990) Opsin immunocytochemical characterization of different types of photoreceptors in the frog pineal organ. J Pineal Res 8:323–333PubMedCrossRefGoogle Scholar
  71. Wiltschko W, Wiltschko R (1995) Magnetic orientation in animals. Springer, HeidelbergCrossRefGoogle Scholar
  72. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693CrossRefGoogle Scholar
  73. Wiltschko W, Wiltschko R, Munro U (2000a) Light-dependent magnetoreception: does directional information change with light intensity? Naturwissenschaften 87:36–40PubMedCrossRefGoogle Scholar
  74. Wiltschko W, Wiltschko R, Munro U (2000b) Light-dependent magnetoreception in birds: the effect of intensity of 565 nm green light. Naturwissenschaften 87:366–369PubMedCrossRefGoogle Scholar
  75. Zhang J, Kleinschmidt J, Sun P, Witkovsky P (1994) Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes. Vis Neurosci 11:1185–1192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OuluOuluFinland
  2. 2.Hachijojima Geothermal Energy MuseumTokyoJapan

Personalised recommendations