Volitional Control of Neural Connectivity

Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 6)

Abstract

For several decades, researchers have explored neurofeedback and related technologies to improve brain function and better understand brain plasticity. New methods to train people to improve functional connectivity or coherence could inspire new methods to treat a wide variety of brain disorders and conditions. This chapter first reviews functional connectivity and coherence, including our recent work with volitional control and MEG, then described promising new work with self-regulation via real-time fMRI. We conclude with future directions, jury selection factors, and some very new work after the 2012 Award.

Keywords

Brain-computer interfaces BCI/BMI learning neurorehabilitation MEG fMRI real-time FMRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abler, B., Roebroeck, A., et al.: Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magn. Reson. Imaging 24(2), 181–185 (2006)CrossRefGoogle Scholar
  2. 2.
    Barry, R.J., Clarke, A.R., et al.: EEG coherence and symptom profiles of children with Attention-Deficit/Hyperactivity Disorder. Clin. Neurophysiol. 122(7), 1327–1332 (2011)CrossRefGoogle Scholar
  3. 3.
    Barttfeld, P., Wicker, B., et al.: A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49(2), 254–263 (2011)CrossRefGoogle Scholar
  4. 4.
    Birbaumer, N.: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6), 517–532 (2006)CrossRefGoogle Scholar
  5. 5.
    Birbaumer, N., Cohen, L.G.: Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579(pt. 3), 621–636 (2007)CrossRefGoogle Scholar
  6. 6.
    Birbaumer, N., Ruiz, S., Sitaram, R.: Learned regulation of brain metabolism. Trends Cogn. Sci. 17(6), 295–302 (2013)CrossRefGoogle Scholar
  7. 7.
    Bode, S., He, A.H., et al.: Tracking the unconscious generation of free decisions using ultra-high field fMRI. PloS One 6(6), e21612 (2011)Google Scholar
  8. 8.
    Brovelli, A., Ding, M., et al.: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. U S A 101(26), 9849–9854 (2004)CrossRefGoogle Scholar
  9. 9.
    Davatzikos, C., Ruparel, K., et al.: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. Neuroimage 28(3), 663–668 (2005)CrossRefGoogle Scholar
  10. 10.
    Donner, T.H., Siegel, M., et al.: Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Current Biology: CB 19(18), 1581–1585 (2009)CrossRefGoogle Scholar
  11. 11.
    Engel, A.K., Fries, P., et al.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2(10), 704–716 (2001)CrossRefGoogle Scholar
  12. 12.
    Friston, K.J., Frith, C.D.: Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3(2), 89–97 (1995)Google Scholar
  13. 13.
    Hamilton, J.P., Glover, G.H., et al.: Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping 32(1), 22–31 (2011)CrossRefGoogle Scholar
  14. 14.
    Hanson, S.J., Matsuka, T., et al.: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? NeuroImage 23(1), 156–166 (2004)CrossRefGoogle Scholar
  15. 15.
    Haynes, J.D., Sakai, K., et al.: Reading hidden intentions in the human brain. Current Biology: CB 17(4), 323–328 (2007)CrossRefGoogle Scholar
  16. 16.
    Honey, G.D., Pomarol-Clotet, E., et al.: Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 128(pt. 11), 2597–2611 (2005)CrossRefGoogle Scholar
  17. 17.
    Just, M.A., Cherkassky, V.L., et al.: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex 17(4), 951–961 (2007)CrossRefGoogle Scholar
  18. 18.
    Kamiya, J., Callaway, E., et al.: Visual evoked responses in subjects trained to control alpha rhythms. Psychophysiology 5(6), 683–695 (1969)CrossRefGoogle Scholar
  19. 19.
    Knott, V., Mahoney, C., et al.: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 106(2), 123–140 (2001)CrossRefGoogle Scholar
  20. 20.
    Kotchoubey, B., Strehl, U., et al.: Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 42(3), 406–416 (2001)CrossRefGoogle Scholar
  21. 21.
    Kuhlman, W.N.: Functional topography of the human mu rhythm. Electroencephalogr. Clin. Neurophysiol. 44(1), 83–93 (1978)CrossRefGoogle Scholar
  22. 22.
    LaConte, S., Anderson, J., et al.: The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18(1), 10–27 (2003)CrossRefGoogle Scholar
  23. 23.
    LaConte, S., Strother, S., et al.: Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2), 317–329 (2005)CrossRefGoogle Scholar
  24. 24.
    LaConte, S.M., Peltier, S.J., et al.: Real-time fMRI using brain-state classification. Human Brain Mapping 28(10), 1033–1044 (2007)CrossRefGoogle Scholar
  25. 25.
    Lages, M., Jaworska, K.: How Predictable are “Spontaneous Decisions” and “Hidden Intentions”? Comparing Classification Results Based on Previous Responses with Multivariate Pattern Analysis of fMRI BOLD Signals. Front. Psychol. 3, 56 (2012)CrossRefGoogle Scholar
  26. 26.
    Lee, S., Ruiz, S., et al.: Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation: a multivariate investigation. Neurorehabilitation and Neural Repair 25(3), 259–267 (2011)CrossRefGoogle Scholar
  27. 27.
    Leopold, D.A., Murayama, Y., et al.: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13(4), 422–433 (2003)CrossRefGoogle Scholar
  28. 28.
    Li, K., Guo, L., et al.: Review of methods for functional brain connectivity detection using fMRI. Comput. Med. Imaging Graph. 33(2), 131–139 (2009)CrossRefMATHGoogle Scholar
  29. 29.
    Mellinger, J., Schalk, G., et al.: An MEG-based brain-computer interface (BCI). Neuroimage 36(3), 581–593 (2007)CrossRefGoogle Scholar
  30. 30.
    Mourao-Miranda, J., Reynaud, E., et al.: The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage 33(4), 1055–1065 (2006)CrossRefGoogle Scholar
  31. 31.
    Murias, M., Webb, S.J., et al.: Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 62(3), 270–273 (2007)CrossRefGoogle Scholar
  32. 32.
    Noonan, S.K., Haist, F., et al.: Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Res. 1262, 48–63 (2009)CrossRefGoogle Scholar
  33. 33.
    Pereira, F., Mitchell, T., et al.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1, suppl.), S199–S209 (2009)CrossRefGoogle Scholar
  34. 34.
    Polyn, S.M., Natu, V.S., et al.: Category-specific cortical activity precedes retrieval during memory search. Science 310(5756), 1963–1966 (2005)CrossRefGoogle Scholar
  35. 35.
    Rogers, B.P., Morgan, V.L., et al.: Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 25(10), 1347–1357 (2007)CrossRefGoogle Scholar
  36. 36.
    Ruiz, S., Lee, S., et al.: Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum. Brain Mapp. 34(1), 200–212 (2013a)CrossRefGoogle Scholar
  37. 37.
    Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., Sitaram, R.: Real-time fMRI brain computer interfaces: Self-regulation of single brain regions to networks. Biol. Psychol. (2013b), pii: S0301-0511(13)00113-0Google Scholar
  38. 38.
    Ruiz, S., Rana, M., et al.: Brain Network Connectivity and Behaviour Enhancement: A fMRI-BCI Study. In: 17th Annual Meeting of the Organization for Human Brain Mapping, Québec City, Canada (2011)Google Scholar
  39. 39.
    Sacchet, M.D., Mellinger, J., et al.: Volitional control of neuromagnetic coherence. Frontiers in Neuroscience 6, 189 (2012)CrossRefGoogle Scholar
  40. 40.
    Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2(8), 539–550 (2001)CrossRefGoogle Scholar
  41. 41.
    Sass, K., Krach, S., et al.: Lion - tiger - stripes: Neural correlates of indirect semantic priming across processing modalities. Neuroimage 45(1), 224–236 (2009)CrossRefGoogle Scholar
  42. 42.
    Sass, K., Sachs, O., et al.: Taxonomic and thematic categories: Neural correlates of categorization in an auditory-to-visual priming task using fMRI. Brain Res. 1270, 78–87 (2009)CrossRefGoogle Scholar
  43. 43.
    Schall, J.D.: Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2(1), 33–42 (2001)CrossRefGoogle Scholar
  44. 44.
    Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Network 16(1), 35–54 (2005)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Seth, A.K.: A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods (2009)Google Scholar
  46. 46.
    Shaw, M.E., Strother, S.C., et al.: Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics. NeuroImage 19(3), 988–1001 (2003)CrossRefGoogle Scholar
  47. 47.
    Shibata, K., Watanabe, T., et al.: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061), 1413–1415 (2011)CrossRefGoogle Scholar
  48. 48.
    Shmuel, A., Leopold, D.A.: Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Hum. Brain Mapp. 29(7), 751–761 (2008)CrossRefGoogle Scholar
  49. 49.
    Siegel, M., Donner, T.H., et al.: Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13(2), 121–134 (2012)Google Scholar
  50. 50.
    Siegel, M., Donner, T.H., et al.: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4), 709–719 (2008)CrossRefGoogle Scholar
  51. 51.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995)CrossRefGoogle Scholar
  52. 52.
    Sitaram, R., Caria, A., et al.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Netw. 22(9), 1320–1328 (2009)CrossRefGoogle Scholar
  53. 53.
    Sitaram, R., Lee, S., et al.: Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage 56(2), 753–765 (2011)CrossRefGoogle Scholar
  54. 54.
    Sitaram, R., Wiskopf, N., et al.: fMRI brain-computer interfaces: A tutorial on methods and applications. IEEE Signal Processing Magazine, Special Issue on BCI 25(1), 99–106 (2008)Google Scholar
  55. 55.
    Smith, S.M., Miller, K.L., et al.: Network modelling methods for fMRI. Neuroimage 54(2), 875–891 (2011)CrossRefGoogle Scholar
  56. 56.
    Stoffers, D., Bosboom, J.L., et al.: Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage 41(2), 212–222 (2008)CrossRefGoogle Scholar
  57. 57.
    Strehl, U., Leins, U., et al.: Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118(5), e1530–e1540 (2006)CrossRefGoogle Scholar
  58. 58.
    Sulzer, J., Haller, S., et al.: Real-time fMRI neurofeedback: Progress and challenges. Neuroimage 76C, 386–399 (2013a)CrossRefGoogle Scholar
  59. 59.
    Sulzer, J., Sitaram, R., Blefari, M.L., Kollias, S., Birbaumer, N., Stephan, K.E., Luft, A., Gassert, R.: Neurofeedback-mediated self-regulation of the dopaminergic midbrain. Neuroimage 83C, 817–825 (2013b)CrossRefGoogle Scholar
  60. 60.
    Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2), 100–113 (2010)CrossRefGoogle Scholar
  61. 61.
    Veit, R., Singh, V., et al.: Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Social Cognitive and Affective Neuroscience 7(6), 623–634 (2012)CrossRefGoogle Scholar
  62. 62.
    von der Malsburg, C.: The Correlation Theory of Brain Function. Max- Planck-Institute for Biophysical Chemistry, Dept. Neurobiology, Göttingen (1981)Google Scholar
  63. 63.
    Wang, K., Liang, M., et al.: Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping 28(10), 967–978 (2007)CrossRefGoogle Scholar
  64. 64.
    Xu, G., Jiang, Y., et al.: Similar spatial patterns of neural coding of category selectivity in FFA and VWFA under different attention conditions. Neuropsychologia 50(5), 862–868 (2012)CrossRefGoogle Scholar
  65. 65.
    Yener, G.G., Basar, E.: Sensory evoked and event related oscillations in Alzheimer’s disease: a short review. Cogn. Neurodyn. 4(4), 263–274 (2010)CrossRefGoogle Scholar
  66. 66.
    Zhang, H.Y., Wang, S.J., et al.: Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256(2), 598–606 (2010)CrossRefGoogle Scholar
  67. 67.
    Zotev, V., Krueger, F., et al.: Self-regulation of amygdala activation using real-time fMRI neurofeedback. PloS One 6(9), e24522 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergio Ruiz
    • 1
    • 2
  • Niels Birbaumer
    • 2
    • 3
  • Ranganatha Sitaram
    • 4
    • 2
    • 5
  1. 1.Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Escuela de MedicinaPontificia Universidad Catolica de ChileSantiagoChile
  2. 2.Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenTübingenGermany
  3. 3.Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere ScientificoVenezia, LidoItaly
  4. 4.Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  5. 5.Sri Chitra Tirunal Institute of Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations