International Workshop on Public Key Cryptography

PKC 2014: Public-Key Cryptography – PKC 2014 pp 95-112 | Cite as

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption: A Framework for Achieving Obfuscation-Based Security and Instantiations from Lattices

  • Nishanth Chandran
  • Melissa Chase
  • Feng-Hao Liu
  • Ryo Nishimaki
  • Keita Xagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8383)

Abstract

In this work we define multiple relaxations to the definition of correctness in secure obfuscation. While still remaining meaningful, these relaxations provide ways to obfuscate many primitives in a more direct and efficient way. In particular, we first show how to construct a secure obfuscator for the re-encryption primitive from the Decisional Learning with Errors (DLWE) assumption, without going through fully homomorphic encryption. This can be viewed as a meaningful way to trade correctness for efficiency. Next, we show how our tools can be used to construct secure obfuscators for the functional re-encryption and multi-hop unidirectional re-encryption primitives. In the former case, we improve upon the efficiency of the only previously known construction that satisfies the stronger notion of collusion-resistant obfuscation (due to Chandran et al. - TCC 2012) and obtain a construction with input ciphertexts of constant length. In the latter case, we provide the first known obfuscation-based definition and construction; additionally, our scheme is the first scheme where the size of the ciphertexts does not grow with every hop.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS. The Internet Society (2005)Google Scholar
  6. 6.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)Google Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)Google Scholar
  11. 11.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. Journal of Cryptology 25(4), 601–639 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)Google Scholar
  16. 16.
    Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: Ostrovsky, R. (ed.) FOCS, pp. 107–109. IEEE (2011)Google Scholar
  18. 18.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)Google Scholar
  20. 20.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Constructions from general assumptions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM 56, Article 34, 6 (2009), A preliminary version appeared in STOC 2005 (2005)Google Scholar
  28. 28.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Nishanth Chandran
    • 1
  • Melissa Chase
    • 1
  • Feng-Hao Liu
    • 2
  • Ryo Nishimaki
    • 3
  • Keita Xagawa
    • 3
  1. 1.Microsoft ResearchUSA
  2. 2.University of MarylandUSA
  3. 3.NTT Secure Platform LaboratoriesJapan

Personalised recommendations