International Workshop on Public Key Cryptography

PKC 2014: Public-Key Cryptography – PKC 2014 pp 221-238 | Cite as

Discrete Logarithm in GF(2809) with FFS

  • Razvan Barbulescu
  • Cyril Bouvier
  • Jérémie Detrey
  • Pierrick Gaudry
  • Hamza Jeljeli
  • Emmanuel Thomé
  • Marion Videau
  • Paul Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8383)

Abstract

The year 2013 has seen several major complexity advances for the discrete logarithm problem in multiplicative groups of small- characteristic finite fields. These outmatch, asymptotically, the Function Field Sieve (FFS) approach, which was so far the most efficient algorithm known for this task. Yet, on the practical side, it is not clear whether the new algorithms are uniformly better than FFS. This article presents the state of the art with regard to the FFS algorithm, and reports data from a record-sized discrete logarithm computation in a prime-degree extension field.

Keywords

Discrete logarithm Function field sieve Cryptanalysis Number theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adj, G., Menezes, A., Oliveira, T., Rodríguez-Henríquez, F.: Weakness of \(\mathbb{F}_{3^{6*509}}\) for discrete logarithm cryptography, preprint, 24 pages (2013), http://eprint.iacr.org/2013/446
  2. 2.
    Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Adleman, L.M., Huang, M.D.A.: Function field sieve method for discrete logarithms over finite fields. Inf. Comput. 151(1-2), 5–16 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain, F., Thomé, E., Zimmermann, P.: CADO-NFS, an implementation of the number field sieve algorithm (2013), development version http://cado-nfs.gforge.inria.fr/
  6. 6.
    Bai, S., Filbois, A., Gaudry, P., Kruppa, A., Morain, F., Thomé, E., Zimmermann, P.: CADO-NFS, Crible Algébrique: Distribution, Optimisation - Number Field Sieve, http://cado-nfs.gforge.inria.fr/
  7. 7.
    Barbulescu, R.: Selecting polynomials for the Function Field Sieve. 23 pages (2013), http://hal.inria.fr/hal-00798386 (preprint)
  8. 8.
    Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau, M., Zimmermann, P.: The relationship between some guy and cryptography, ECC 2012, rump session talk (humoristic) (2012), http://ecc.rump.cr.yp.to/
  9. 9.
    Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, 8 pages (2013), http://hal.inria.fr/hal-00835446 (preprint)
  10. 10.
    Bouvier, C.: The filtering step of discrete logarithm and integer factorization algorithms, 22 pages (2013), http://hal.inria.fr/hal-00734654 (preprint)
  11. 11.
    Detrey, J., Gaudry, P., Videau, M.: Relation collection for the Function Field Sieve. In: Nannarelli, A., Seidel, P.M., Tang, P.T.P. (eds.) Proceedings of ARITH-21, pp. 201–210. IEEE (2013)Google Scholar
  12. 12.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Granger, R., Holt, A.J., Page, D.L., Smart, N.P., Vercauteren, F.: Function field sieve in characteristic three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 223–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based cryptosystems using ηT pairing over GF(397). In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 43–60. 7658, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Jeljeli, H.: Accelerating iterative SpMV for Discrete Logarithm Problem using GPUs, 11 pages (2013), http://hal.inria.fr/hal-00734975 (preprint)
  17. 17.
    Joux, A., Lercier, R.: Discrete logarithms in GF(2n) (521 bits), email to the NMBRTHRY mailing list (September 2001), http://listserv.nodak.edu/archives/nmbrthry.html
  18. 18.
    Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic, To appear in Selected Areas in Cryptography, 12 pages (2013), http://eprint.iacr.org/2013/095 (preprint)
  20. 20.
    Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete logarithms in prime fields. A Comparison with the Gaussian Integer Method 72(242), 953–967 (2003)MathSciNetMATHGoogle Scholar
  21. 21.
    Joux, A., Lercier, R.: Discrete logarithms in GF(2607) and GF(2613). E-mail to the NMBRTHRY mailing list (September 2005), http://listserv.nodak.edu/archives/nmbrthry.html
  22. 22.
    Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems. Mathematics of Computation 64(210), 777–806 (1995)MathSciNetMATHGoogle Scholar
  23. 23.
    Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Lenstra, A.K., Kleinjung, T., Thomé, E.: Universal security. In: Fischlin, M., Katzenbeisser, S. (eds.) Buchmann Festschrift. LNCS, vol. 8260, pp. 121–124. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Matsumoto, R.: Using Cab curves in the function field sieve. IEICE Trans. Fund. E82-A(3), 551–552 (1999)Google Scholar
  26. 26.
    Murphy, B.A.: Polynomial selection for the number field sieve integer factorisation algorithm. Phd thesis, Australian National University (1999)Google Scholar
  27. 27.
    National Institute of Standards and Technology: Digital signature standard, DSS (2013), http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Razvan Barbulescu
    • 1
  • Cyril Bouvier
    • 1
  • Jérémie Detrey
    • 1
  • Pierrick Gaudry
    • 1
  • Hamza Jeljeli
    • 1
  • Emmanuel Thomé
    • 1
  • Marion Videau
    • 1
  • Paul Zimmermann
    • 1
  1. 1.CARAMEL project-team, LORIA, INRIA / CNRSUniversité de LorraineVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations