Neural Fields pp 433-455 | Cite as

Neural Fields, Masses and Bayesian Modelling

  • Dimitris A. PinotsisEmail author
  • Karl J. Friston


This chapter considers the relationship between neural field and mass models and their application to modelling empirical data. Specifically, we consider neural masses as a special case of neural fields, when conduction times tend to zero and focus on two exemplar models of cortical microcircuitry; namely, the Jansen-Rit and the canonical microcircuit model . Both models incorporate parameters pertaining to important neurobiological attributes, such as synaptic rate constants and the extent of lateral connections. We describe these models and show how Bayesian inference can be used to assess the validity of their field and mass variants, given empirical data. Interestingly, we find greater evidence for neural field variants in analyses of LFP data but fail to find more evidence for such variants, relative to their neural mass counterparts, in MEG (virtual electrode) data. The key distinction between these data is that LFP data are sensitive to a wide range of spatial frequencies and the temporal fluctuations that these frequencies contain. In contrast, the lead fields, inherent in non-invasive electromagnetic recordings, are necessarily broader and suppress temporal dynamics that are expressed in high spatial frequencies. We present this as an example of how neuronal field and mass models (hypotheses) can be compared formally.


Hide State Local Field Potential Neural Field Lead Field Cortical Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Atay, F.M., Hutt, A.: Neural fields with distributed transmission speeds and long-range feedback delays. SIAM J. Appl. Dyn. Syst. 5, 670–698 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J.: Canonical microcircuits for predictive coding. Neuron. 76(4), 695–711 (2012). doi:10.1016/j.neuron.2012.10.038CrossRefGoogle Scholar
  4. 4.
    Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006)CrossRefGoogle Scholar
  5. 5.
    Bressloff, P.C.: New mechanism for neural pattern formation. Phys. Rev. Lett. 76, 4644–4647 (1996)CrossRefGoogle Scholar
  6. 6.
    Bressloff, P.C.: Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D Nonlinear Phenom. 155, 83–100 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R.: Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108, 11262 (2011)CrossRefGoogle Scholar
  8. 8.
    Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys. D Nonlinear Phenom. 178, 219–241 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Coombes, S., Venkov, N.A., Shiau, L., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Daunizeau, J., Kiebel, S.J., Friston, K.J.: Dynamic causal modelling of distributed electromagnetic responses. Neuroimage 47, 590–601 (2009)CrossRefGoogle Scholar
  12. 12.
    David, O., Kiebel, S.J., Harrison, L.M., Mattout, J., Kilner, J.M., Friston, K.J.: Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–1272 (2006)CrossRefGoogle Scholar
  13. 13.
    Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K.: The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008)CrossRefGoogle Scholar
  14. 14.
    Douglas, R.J., Martin, K.: A functional microcircuit for cat visual cortex. J. Physiol. 440, 735 (1991)Google Scholar
  15. 15.
    Freeman, W.J.: Linear analysis of dynamics of neural masses. Ann. Rev. Biophys. Bioeng. 1, 225–256 (1972)CrossRefGoogle Scholar
  16. 16.
    Freeman, W.J.: A neurobiological theory of meaning in perception. In: Proceedings of the international joint conference on neural networks, Portland, vols. 1–4, pp. 1373–1378 (2003)Google Scholar
  17. 17.
    Freeman, W.J.: A field-theoretic approach to understanding scale-free neocortical dynamics. Biol. Cybern. 92, 350–359 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003)CrossRefGoogle Scholar
  19. 19.
    Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W.: Variational free energy and the Laplace approximation. Neuroimage 34, 220–234 (2007)CrossRefGoogle Scholar
  20. 20.
    Galka, A., Ozaki, T., Muhle, H., Stephani, U., Siniatchkin, M.: A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cognit. Neurodyn. 2, 101–113 (2008)CrossRefGoogle Scholar
  21. 21.
    Ghosh, A., Rho, Y., McIntosh, A.R., Kotter, R., Jirsa, V.K.: Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cognit. Neurodyn. 2, 115–120 (2008)CrossRefGoogle Scholar
  22. 22.
    Grindrod, P., Pinotsis, D.A.: On the spectra of certain integro-differential-delay problems with applications in neurodynamics. Phys. D Nonlinear Phenom. 240, 13–20 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Haeusler, S., Maass, W.: A statistical analysis of information-processing proper-ties of lamina-specific cortical microcircuit models. Cereb. Cortex 17, 149 (2007)CrossRefGoogle Scholar
  24. 24.
    Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Jirsa, V.K.: Neural field dynamics with local and global connectivity and time delay. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1131 (2009)Google Scholar
  26. 26.
    Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)CrossRefGoogle Scholar
  27. 27.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  28. 28.
    Kiebel, S.J., Garrido, M.I., Moran, R., Chen, C.C., Friston, K.J.: Dynamic causal modeling for EEG and MEG. Hum. Brain Mapp. 30, 1866–1876 (2009)CrossRefGoogle Scholar
  29. 29.
    Lefort, S., Tomm, C., Floyd Sarria, J.-C., Petersen, C.C.H.: The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009)CrossRefGoogle Scholar
  30. 30.
    Liley, D.T.J.: Neural field modelling of the electroencephalogram: physiological insights and practical applications. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds.) Neural Fields: Theory and Applications. Springer, Berlin/Heidelberg (2014)Google Scholar
  31. 31.
    Liley, D.T.J., Alexander, D.M., Wright, J.J., Aldous, M.D.: Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Netw. Comput. Neural Syst. 10, 79–92 (1999)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electrocortical activity. Netw. Comput. Neural Syst. 13, 67–113 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Lopes da Silva, F.H., Storm van Leeuwen, W.: The cortical alpha rhythm in dog: the depth and surface profile of phase. Raven Press, New York (1978)Google Scholar
  34. 34.
    Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity. Biol. Cybern. 15, 27–37 (1974)Google Scholar
  35. 35.
    Lumer, E.D., Edelman, G.M., Tononi, G.: Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb. Cortex 7, 207 (1997)Google Scholar
  36. 36.
    Markounikau, V., Igel, C., Grinvald, A., Jancke, D.: A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging. PLoS Comput. Biol. 6(9), e1000919 (2010). doi:10.1371/journal.pcbi.1000919CrossRefMathSciNetGoogle Scholar
  37. 37.
    Moran, R.J., Kiebel, S.J., Stephan, K.E., Reilly, R.B., Daunizeau, J., Friston, K.J.: A neural mass model of spectral responses in electrophysiology. Neuroimage 37, 706–720 (2007)CrossRefGoogle Scholar
  38. 38.
    Moran, R.J., Stephan, K.E., Seidenbecher, T., Pape, H.C., Dolan, R.J., Friston, K.J.: Dynamic causal models of steady-state responses. Neuroimage 44, 796–811 (2009)CrossRefGoogle Scholar
  39. 39.
    Moran, R.J., Jung, F., Kumagai, T., Endepols, H., Graf, R., Dolan, R.J., Friston, K.J., Stephan, K.E., Tittgemeyer, M.: Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS One 6(8), e22790 (2011). doi:10.1371/journal.pone.0022790CrossRefGoogle Scholar
  40. 40.
    Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)Google Scholar
  41. 41.
    Nunez, P.L.: Multiscale neocortical dynamics, experimental EEG measures, and global facilitation of local cell assemblies. Behav. Brain Sci. 19, 305 (1996)CrossRefGoogle Scholar
  42. 42.
    Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain, vol. 1, Oxford University Press, p. i-612 (2006)Google Scholar
  43. 43.
    Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M., Leff, A.P.: Comparing families of dynamic causal models. PLoS Comput. Biol. 6, e1000709 (2010)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Potthast, R., beim Graben, P.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)Google Scholar
  45. 45.
    Pinotsis, D.A., Friston, K.J.: Neural fields, spectral responses and lateral connections. Neuroimage 55, 39–48 (2011)CrossRefGoogle Scholar
  46. 46.
    Pinotsis, D.A., Moran, R.J., Friston, K.J.: Dynamic causal modeling with neural fields. Neuroimage 59, 1261–1274 (2012)CrossRefGoogle Scholar
  47. 47.
    Qubbaj, M.R., Jirsa, V.K.: Neural field dynamics under variation of local and global connectivity and finite transmission speed. Phys. D Nonlinear Phenom. 238, 2331–2346 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Raizada, R.D.S., Grossberg, S.: Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb. Cortex 13, 100–113 (2003)CrossRefGoogle Scholar
  49. 49.
    Riera, J.J., Jimenez, J.C., Wan, X., Kawashima, R., Ozaki, T.: Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 28, 335–354 (2007)Google Scholar
  50. 50.
    Robinson, P.A.: Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J.: Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys. Rev. E 63(4), 041909 (2001)CrossRefGoogle Scholar
  52. 52.
    Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002)CrossRefGoogle Scholar
  53. 53.
    Robinson, P.A., Rennie, C.J., Rowe, D., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W.: Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28, S74–S79 (2003)CrossRefGoogle Scholar
  54. 54.
    Roopun, A.K., Kramer, M.A., Carracedo, L.M., Kaiser, M., Davies, C.H., Traub, R.D., Kopell, N.J., Whittington, M.A.: Period concatenation underlies interactions between gamma and beta rhythms in neocortex. Front Cell Neurosci. 2, 1 (2008)CrossRefGoogle Scholar
  55. 55.
    Schiff, S., Sauer, T.: Kalman filter control of a model of spatiotemporal cortical dynamics. BMC Neurosci. 9, O1 (2008)CrossRefGoogle Scholar
  56. 56.
    Schwarzkopf, D.S., Robertson, D.J., Song, C., Barnes, G.R., Rees, G.: The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex. J. Neurosci. 32, 1507–1512 (2012)CrossRefGoogle Scholar
  57. 57.
    Steriade, M., Deschenes, M.: The thalamus as a neuronal oscillator. Brain Res. Rev. 8, 1–63 (1984)CrossRefGoogle Scholar
  58. 58.
    Valdes, P.A., Jimenez, J.C., Riera, J., Biscay, R., Ozaki, T.: Nonlinear EEG analysis based on a neural mass model. Biolog. Cybern. 81, 415–424 (1999)CrossRefzbMATHGoogle Scholar
  59. 59.
    Van Rotterdam, A., Lopes da Silva, F.H., Van den Ende, J., Viergever, M.A., Hermans, A.J.: A model of the spatial-temporal characteristics of the alpha rhythm. Bull. Math. Biol. 44, 283–305 (1982)Google Scholar
  60. 60.
    Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997)CrossRefGoogle Scholar
  61. 61.
    Weiler, N., Wood, L., Yu, J., Solla, S.A., Shepherd, G.M.G.: Top-down laminar organization of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366 (2008)CrossRefGoogle Scholar
  62. 62.
    Wilson, H.R., Cowan, J.D.: Mathematical theory of functional dynamics of cortical and thalamic nervous-tissue. Kybernetik 13, 55–80 (1973)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK

Personalised recommendations