Advertisement

Practical Packing Method in Somewhat Homomorphic Encryption

  • Masaya Yasuda
  • Takeshi Shimoyama
  • Jun Kogure
  • Kazuhiro Yokoyama
  • Takeshi Koshiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8247)

Abstract

Somewhat homomorphic encryption is public key encryption supporting a limited number of both additions and multiplications on encrypted data, which is useful for performing fundamental computations with protecting the data confidentiality. In this paper, we focus on the scheme proposed by Lauter, Naehrig and Vaikuntanathan (ACM CCSW 2011), and present two types of packed ciphertexts based on their packing technique. Combinations of two types of our packing method give practical size and performance for wider computations such as statistical analysis and distances. To demonstrate its efficiency, we implemented the scheme with our packing method for secure Hamming distance, which is often used in privacy-preserving biometrics. For secure Hamming distance between two binary vekoshiba@mail.saitama-u.ac.jpctors of 2048-bit, it takes 5.31 ms on an Intel Xeon X3480 at 3.07 GHz. This gives the best performance in the state-of-the-art work using homomorphic encryption.

Keywords

Somewhat homomorphic encryption Ring-LWE assumption Packed ciphertexts Secure Hamming distance 

References

  1. 1.
    Belguechi, R., Alimi, V., Cherrier, E., Lacharme, P., Rosenberger, C.: An overview on privacy preserving biometrics. http://cdn.intechopen.com/pdfs/17038/InTech-An_overview_on_privacy_preserving_biometrics.pdf
  2. 2.
    Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 190–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science-ITCS 2012, pp. 309–325. ACM (2012)Google Scholar
  7. 7.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Foundations of Computer Science-FOCS 2011, pp. 97–106. IEEE (2011)Google Scholar
  9. 9.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Cloud Security Alliance (CSA), Security guidance for critical areas of focus in cloud computing. https://cloudsecurityalliance.org/csaguide.pdf, December 2009
  11. 11.
    Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Damgård, I., Geisler, M., Krøigård, M.: Homomorphic encryption and secure comparison. J. Appl. Crypt. 1(1), 22–31 (2008)zbMATHGoogle Scholar
  14. 14.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  16. 16.
    Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secrete all partial information. In: Symposium on Theory of Computing-STOC 1982, pp. 365–377. ACM (1982)Google Scholar
  19. 19.
    Hattori, M., Matsuda, N., Ito, T., Takashima, K., Yoneda, T.: Provably-secure cancelable biometrics using 2-DNF evaluation. J. Inf. Process. 20(2), 496–507 (2012)Google Scholar
  20. 20.
    Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security (review article). EURASIP J. Adv. Sig. Process 2008, 1–17 (2008)CrossRefGoogle Scholar
  21. 21.
    Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009)Google Scholar
  22. 22.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical?.  In: ACM Workshop on Cloud Computing Security Workshop-CCSW 2011, pp. 113–124. ACM (2011)Google Scholar
  23. 23.
    Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure face recognition. In: IEEE Security and Privacy, pp. 239–254. IEEE Computer Society (2010)Google Scholar
  26. 26.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes. Cryptogr. 71, 57–81 (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    U.S. Department of Homeland Security, Privacy impact assessment for the biometric storage system. http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_cis_bss.pdf, 28 March, 2007
  31. 31.
    Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Packed homomorphic encryption based on ideal lattices and its application to biometrics. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 55–74. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masaya Yasuda
    • 1
  • Takeshi Shimoyama
    • 1
  • Jun Kogure
    • 1
  • Kazuhiro Yokoyama
    • 2
  • Takeshi Koshiba
    • 3
  1. 1.Fujitsu Laboratories Ltd.Nakahara-ku, KawasakiJapan
  2. 2.Department of MathematicsRikkyo UniversityTokyoJapan
  3. 3.Division of Mathematics, Electronics and Informatics, Graduate School of Science and EngineeringSaitama UniversitySakura, SaitamaJapan

Personalised recommendations