Neurofeedback with Real-Time Functional MRI

Chapter

Abstract

Since its invention 20 years ago, functional magnetic resonance imaging (fMRI) has become one of the most widely used and probably the publicly most visible noninvasive technique to measure brain activation. fMRI has played a central role in the development of cognitive neuroscience, and several new fields, including social neuroscience, neuroeconomics, and genetic imaging, may not have developed had it not been for the unique opportunities afforded by fMRI. The particular strengths of this technique are in its spatial resolution and fidelity, ability to reach deep subcortical structures, and whole-brain coverage, enabling the mapping of functionally connected networks and the extraction of information from activation patterns that are distributed across different brain areas. In the psychiatric domain, fMRI has made major contributions to the understanding of psychopathology and the effects of risk genes on cognitive and affective networks (Linden 2012a, b), and in neurology fMRI has become a central technique for mapping neuroplasticity, for example, in recovery from stroke (Seitz 2010), and for presurgical mapping. However, fMRI has not yet fulfilled its translational potential, and there is as of today no established diagnostic, prognostic, or therapeutic use of this technique for any of the neuropsychiatric disorders.

Abbreviations

ACPC

Anterior commissure-posterior commissure

ADHD

Attention deficit/hyperactivity disorder

DBS

Deep-brain stimulation

DCT

Discrete cosine transform

ETH

Swiss Federal Institute of Technology

fMRI-/EEG-NF

fMRI-/EEG-based neurofeedback

GLM

General linear model

GP-GPUs

General purpose graphic processing units

ICA

Independent component analysis

MVPA

Multi-voxel pattern analysis

PD

Parkinson’s disease

SMA

Supplementary motor area

SVM

Support vector machine

tDCS

Transcranial direct current stimulation

TMS

Transcranial magnetic stimulation

TR

Volume time to repeat

References

  1. Bagarinao E, Matsuo K, Nakai T, Sato S (2003) Estimation of general linear model coefficients for real-time application. Neuroimage 19:422–429PubMedCrossRefGoogle Scholar
  2. Bagarinao E, Nakai T, Tanaka Y (2006) Real-time functional MRI: development and emerging applications. Magn Reson Med Sci 5:157–165PubMedCrossRefGoogle Scholar
  3. Bandura A (1997) Self-efficacy: the exercise of control. W.H. Freeman, New YorkGoogle Scholar
  4. Berman BD, Horovitz SG, Venkataraman G, Hallett M (2012) Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. Neuroimage 59(2):917–925PubMedCentralPubMedCrossRefGoogle Scholar
  5. Birbaumer N, Cohen L (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579(Pt 3):621–636PubMedCentralPubMedCrossRefGoogle Scholar
  6. Birbaumer N, Ruiz S, Sitaram R (2013) Learned regulation of brain metabolism. Trends Cogn Sci 17(6):295–302PubMedCrossRefGoogle Scholar
  7. Caria A, Veit R, Sitaram R et al (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35(3):1238–1246PubMedCrossRefGoogle Scholar
  8. Caria A, Sitaram R, Veit R, Begliomini C, Birbaumer N (2010) Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol Psychiatry 68(5):425–432PubMedCrossRefGoogle Scholar
  9. Caria A, Sitaram R, Birbaumer N (2012) Real-time fMRI: a tool for local brain regulation. Neuroscientist 18(5):487–501PubMedCrossRefGoogle Scholar
  10. Cox RW, Jesmanowicz A, Hyde JS (1995) Realtime functional magnetic resonance imaging. Magn Reson Med 33(2):230–236PubMedCrossRefGoogle Scholar
  11. deCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci 11:473–481PubMedCrossRefGoogle Scholar
  12. deCharms RC (2008) Applications of real-time fMRI. Nat Rev Neurosci 9:720–729PubMedCrossRefGoogle Scholar
  13. deCharms R, Christoff K, Glover G, Pauly J, Whitfield S, Gabrieli J (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436–443PubMedCrossRefGoogle Scholar
  14. deCharms R, Maeda F, Glover G et al (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 102(51):18626–18631PubMedCentralPubMedCrossRefGoogle Scholar
  15. Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2003) Real-time independent component analysis of fMRI time-series. Neuroimage 20:2209–2224PubMedCrossRefGoogle Scholar
  16. Feinberg DA, Yacoub E (2012) The rapid development of high speed, resolution and precision in fMRI. Neuroimage 62(2):720–725PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284PubMedCrossRefGoogle Scholar
  18. Goebel R (2001) Cortex-based real-time fMRI. Neuroimage 13:S129CrossRefGoogle Scholar
  19. Goebel R, Sorger B, Kaiser J, Birbaumer N, Weiskopf N (2004) BOLD brain pong: self regulation of local brain activity during synchronously scanned, interacting subjects. Presented at: 34th Annual Meeting of the Society for Neuroscience, CAGoogle Scholar
  20. Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27:392–401PubMedCrossRefGoogle Scholar
  21. Goebel R, Zilverstand A, Sorger B (2010) Real-time fMRI-based brain computer interfacing for neurofeedback therapy and compensation of lost motor functions. Imaging Med 2:407–415CrossRefGoogle Scholar
  22. Habes I, Johnston SJ, Tatineni R et al (2010) Functional magnetic resonance (fMRI)-based neurofeedback as a potential treatment method for depression. FENS, AmsterdamGoogle Scholar
  23. Haller S, Birbaumer N, Veit R (2010) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20(3):696–703PubMedCrossRefGoogle Scholar
  24. Hamilton JP, Glover GH, Hsu JJ, Johnson RF, Gotlib IH (2011) Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp 32(1):22–31PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hammond D (2005) Neurofeedback with anxiety and affective disorders. Child Adolesc Psychiatr Clin N Am 14(1):105–123, viiPubMedCrossRefGoogle Scholar
  26. Hawkinson JE, Ross AJ, Parthasarathy S et al (2012) Quantification of adverse events associated with functional MRI scanning and with real-time fMRI-based training. Int J Behav Med 19(3):372–81PubMedCrossRefGoogle Scholar
  27. Hinds O, Ghosh S, Thompson TW, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JDE (2011) Computing moment-to-moment BOLD activation for real-time neurofeedback. Neuroimage 54:361–368PubMedCentralPubMedCrossRefGoogle Scholar
  28. Horovitz SG, Berman BD, Hallett M (2010) Real time BOLD functional MRI neuro-feedback affects functional connectivity. Conf Proc IEEE Eng Med Biol Soc 2010:4270–4273PubMedGoogle Scholar
  29. Ihssen N, Cox WM, Wiggett A, Fadardi JS, Linden DE (2011) Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli. Cereb Cortex 21(6):1408–1415PubMedCrossRefGoogle Scholar
  30. Johnston SJ, Boehm SG, Healy D, Goebel R, Linden DE (2010) Neurofeedback: a promising tool for the self-regulation of emotion networks. Neuroimage 49(1):1066–1072PubMedCrossRefGoogle Scholar
  31. Johnston S, Linden DE, Healy D, Goebel R, Habes I, Boehm SG (2011) Upregulation of emotion areas through neurofeedback with a focus on positive mood. Cogn Affect Behav Neurosci 11(1):44–51PubMedCrossRefGoogle Scholar
  32. LaConte SM (2011) Decoding fMRI brain states in real-time. Neuroimage 56:440–454PubMedCrossRefGoogle Scholar
  33. LaConte SM, Peltier SJ, Hu XP (2007) Real-time fMRI using brain-state classification. Hum Brain Mapp 28:1033–1044PubMedCrossRefGoogle Scholar
  34. Lang PJ, Bradley MM, Cuthbert BN (1999) International Affective Picture System (IAPS): technical manual and affective ratings. University of Florida, Center for Research in Psychophysiology, GainesvilleGoogle Scholar
  35. Lansbergen MM, van Dongen-Boomsma M, Buitelaar JK, Slaats-Willemse D (2011) ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study. J Neural Transm 118(2):275–284PubMedCentralPubMedCrossRefGoogle Scholar
  36. Linden DE (2012a) The challenges and promise of neuroimaging in psychiatry. Neuron 73(1):8–22PubMedCrossRefGoogle Scholar
  37. Linden D (2012b) The biology of psychological disorders. Palgrave Macmillan, BasingstokeGoogle Scholar
  38. Linden D (2013) Biological psychiatry: time for new paradigms. Br J Psychiatry 202:166–167PubMedCrossRefGoogle Scholar
  39. Lofthouse N, Arnold LE, Hersch S, Hurt E, Debeus R (2012) A review of neurofeedback treatment for pediatric ADHD. J Atten Disord 16(5):351–72PubMedCrossRefGoogle Scholar
  40. McCaig RG, Dixon M, Keramatian K, Liu I, Christoff K (2011) Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. Neuroimage 55(3):1298–1305PubMedCrossRefGoogle Scholar
  41. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869PubMedCrossRefGoogle Scholar
  42. Posse S, Fitzgerald D, Gao K et al (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage 18(3):760–768PubMedCrossRefGoogle Scholar
  43. Rota G, Sitaram R, Veit R et al (2009) Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum Brain Mapp 30(5):1605–1614PubMedCrossRefGoogle Scholar
  44. Rota G, Handjaras G, Sitaram R, Birbaumer N, Dogil G (2011) Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain Lang 117(3):123–132PubMedCrossRefGoogle Scholar
  45. Ruiz S, Lee S, Soekadar SR et al (2013) Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp 34(1):200–12PubMedCrossRefGoogle Scholar
  46. Scharnowski F, Hutton C, Josephs O, Weiskopf N, Rees G (2012) Improving visual perception through neurofeedback. J Neurosci 32(49):17830–17841PubMedCentralPubMedCrossRefGoogle Scholar
  47. Scheinost D, Stoica T, Saksa J et al (2013) Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry 3:e250PubMedCentralPubMedCrossRefGoogle Scholar
  48. Seitz RJ (2010) How imaging will guide rehabilitation. Curr Opin Neurol 23(1):79–86PubMedCrossRefGoogle Scholar
  49. Shibata K, Watanabe T, Sasaki Y, Kawato M (2011) Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061):1413–1415PubMedCentralPubMedCrossRefGoogle Scholar
  50. Shin L, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35(1):169–191PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sitaram R, Caria A, Veit R, Gaber T, Kuebler A, Birbaumer N (2005) Real-time fMRI based brain–computer interface enhanced by interactive virtual worlds. In: Proceedings of the 45th annual meeting Society for Psychophysiological Research, LisbonGoogle Scholar
  52. Sitaram R, Lee S, Ruiz S, Rana M, Veit R, Birbaumer N (2011) Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage 56(2):753–765PubMedCrossRefGoogle Scholar
  53. Sitaram R, Veit R, Stevens B et al (2012) Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study. Neurorehabil Neural Repair 26(3):256–265PubMedCrossRefGoogle Scholar
  54. Smyser C, Grabowski TJ, Frank RJ, Haller JW, Bolinger L (2001) Real-time multiple linear regression for fMRI supported by time-aware acquisition and processing. Magn Reson Med 45:289–298PubMedCrossRefGoogle Scholar
  55. Sorger B, Peters J, van den Boomen C, Zilverstand A, Reithler R, Goebel R (2010) Real-time decoding the locus of visuospatial attention using multi-voxel pattern classification. In: Human brain mapping conference, Barcelona, 16th ednGoogle Scholar
  56. Subramanian L, Hindle JV, Johnston S et al (2011) Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J Neurosci 31(45):16309–16317PubMedCrossRefGoogle Scholar
  57. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, deCharms RC, Gassert R, Goebel R, Herwig U, LaConte S, Linden D, Luft A, Seifritz E, Sitaram R (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76:386–399PubMedCrossRefGoogle Scholar
  58. Veit R, Singh V, Sitaram R, Caria A, Rauss K, Birbaumer N (2012) Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Soc Cogn Affect Neurosci 7(6):623–34PubMedCentralPubMedCrossRefGoogle Scholar
  59. Weiskopf N (2012) Real-time fMRI and its application to neurofeedback. Neuroimage 62:682–692PubMedCrossRefGoogle Scholar
  60. Weiskopf N, Veit R, Erb M et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586PubMedCrossRefGoogle Scholar
  61. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K (2004a) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 98:357–373PubMedCrossRefGoogle Scholar
  62. Weiskopf N, Mathiak K, Bock S et al (2004b) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):966–970PubMedCrossRefGoogle Scholar
  63. Yoo SS, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13(11):1377–1381PubMedCrossRefGoogle Scholar
  64. Yoo SS, O’Leary HM, Fairneny T et al (2006) Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. Neuroreport 17(12):1273–1278PubMedCrossRefGoogle Scholar
  65. Yoo SS, Lee JH, O’Leary H, Panych LP, Jolesz FA (2008) Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery. Int J Imaging Syst Technol 18(1):69–78PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zilverstand A, Sorger B, Zimmermann J, Kaas A, Goebel R (2014) Instantaneous correlation: a suitable tool for fMRI-based functional connectivity neurofeedback? PLoS One 9(1):e85929PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zotev V, Krueger F, Phillips R et al (2011) Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One 6(9):e24522PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Department of Neuroimaging and NeuromodellingNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
  3. 3.Institute of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK

Personalised recommendations