Online Presences of Traditional Media vs. Blogs: Redundancy and Unique News Coverage

  • Kay HamacherEmail author
Part of the Media Business and Innovation book series (MEDIA)


Traditional media and blogs compete for the attention of the general audience and readership—thus addressing the expectations of end-consumers. This competition and the underlying convergence of content and technology imply new strategic challenges for media businesses. One obvious route would be to diverse content and target a selected audience. But did traditional took this route? To address this question we used a newly developed classification and clustering technique for the online presences of media and blogs. We applied the technique to empirical data gathered for the online presences of German-speaking media and to their respective RSS feeds. Blogs were chosen as new strategic challengers—in particular when it comes to redundancy with respect to content. We put the findings into the context of the current debate about blogs vs. traditional journalism and the respective intellectual property rights, as well as the implication for the above mentioned strategic challenges.


WWW Convergence Clustering Media Information theory 



The author would like to thank Franziska Hoffgaard and Philipp Weil for helpful comments and discussions. KH was supported by the Fonds der chemischen Industrie through a grant for junior faculty during this study.


  1. Bachmayer, S., Lugmayr, A., & Kotsis, G. (2010). Convergence of collaborative web approaches and interactive tv program formats. International Journal of Web Information Systems, 6, 74–94. doi: 10.1108/17440081011034493.CrossRefGoogle Scholar
  2. Beckedahl, M. (2010). Verleger: Leistungsschutzrecht soll sprache monopolisieren.
  3. Behrendt, J., & Zeppenfeld, K. (2008). Web 2.0 (Informatik im Fokus). Auflage: Springer.Google Scholar
  4. Bird, S. (2002). Nltk: The natural language toolkit (pp. 62–69). Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, Association for Computational Linguistics, Philadelphia.Google Scholar
  5. Blahut, R. E. (1987). Principles and practice of information theory. Reading, MA: Addison-Wesley. ISBN 0201107090.Google Scholar
  6. Boba, P., Weil, P., Hoffgaard, F., & Hamacher, K. (2011). Intra- and inter-molecular co-evolution: the case of HIV1 protease and reverse transcriptase. In A. Fred, J. Filipe, & H. Gamboa (Eds.), Proceeding of BIOINFORMATICS2010 (Vol. 127, pp. 356–366). Springer Communications in Computer and Information Science.Google Scholar
  7. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
  8. Endres, D., & Schindelin, J. (2003). A new metric for probability distributions. IEEE Trans Info Theo, 49, 1858–1860.CrossRefGoogle Scholar
  9. Felsenstein, J. (1989). PHYLIP – phylogeny inference package (version 3.2). Cladistics, 5, 164–166.Google Scholar
  10. Hamacher, K. (2005). On stochastic global optimization of one-dimensional functions. Physica A, 354, 547–557.CrossRefGoogle Scholar
  11. Hamacher, K. (2006). Adaptation in stochastic tunneling global optimization of complex potential energy landscapes. Europhys Lett, 74(6), 944–950.CrossRefGoogle Scholar
  12. Hamacher, K. (2007a). Adaptive extremal optimization by detrended fluctuation analysis. J Comp Phys, 227(2), 1500–1509.CrossRefGoogle Scholar
  13. Hamacher, K. (2007b). Energy landscape paving as a perfect optimization approach under detrended fluctuation analysis. Physica A, 378(2), 307–314.CrossRefGoogle Scholar
  14. Hamacher, K. (2007c). Information theoretical measures to analyze trajectories in rational molecular design. J Comp Chem, 28(16), 2576–2580.CrossRefGoogle Scholar
  15. Hamacher, K. (2010). Protein domain phylogenies—Information theory and evolutionary dynamics. In: A. Fred, J. Filipe, & H. Gamboa (Eds.), Proceeding of BIOINFORMATICS 2010 (pp. 114–122). ISBN 978-989-674-019-1.Google Scholar
  16. Harris, Z. (1954). Distributional structure. Word, 10, 146–162.Google Scholar
  17. Lehtisaari, K., Karppinen, K., Harjuniemi, T., Grnlund, M., Linden, C. G., Nieminen, H., et al. (2012). Media convergence and business models: responses of finnish daily newspapers. ISBN 978-952-10-8277-1.Google Scholar
  18. Lugmayr, A., Franssila, H., Safran, C., & Hammouda, I. (Eds.) (2011). Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments. Tampere, Finland: MindTrek Ry.Google Scholar
  19. Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.Google Scholar
  20. Murtagh, F. (1985). Multidimensional clustering algorithms. In COMPSTAT Lectures 4. Würzburg: Physica-Verlag.Google Scholar
  21. Pape, S., Hoffgaard, F., & Hamacher, K. (2010). Distance-dependent classification of amino acids by information theory. Proteins: Structure, Function, and Bioinformatics, 78(10), 2322–2328.CrossRefGoogle Scholar
  22. Picard, R. G., Dal Zotto, C., & Werfel, M. (2006). Business models of newspaper publishing companies. 1, Ifra Report.Google Scholar
  23. Porter, M. (1980). An algorithm for suffix stripping. Program, 14, 130–137.CrossRefGoogle Scholar
  24. Porter, M. (2006). Stemming algorithms for various European languages.
  25. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0,
  26. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.CrossRefGoogle Scholar
  27. van Tuyll, D. (2010). The past is prologue, or. Journalism Studies, 11(4), 477–486. doi: 10.1080/14616701003638343.CrossRefGoogle Scholar
  28. Zotto, C. D., Galichet, G., & Lugmayr, A. (2011). Managing media convergence: An economic and editorial project. In European Media Management Conference 2011. Moscow: European Media Management Association (EMMA).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhysicsTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of BiologyTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations