Relativistic Coulomb Integrals and Zeilberger’s Holonomic Systems Approach II

  • Christoph Koutschan
  • Peter Paule
  • Sergei K. Suslov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8372)

Abstract

We derive the recurrence relations for relativistic Coulomb integrals directly from the integral representations with the help of computer algebra methods. In order to manage the computational complexity of this problem, we employ holonomic closure properties in a sophisticated way.

Keywords

Coulomb integral holonomic systems approach creative telescoping holonomic closure property operator algebra annihilating ideal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. Journal of Symbolic Computation 10(6), 571–591 (1990)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-klassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Innsbruck, Austria (1965)Google Scholar
  3. 3.
    Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Mathematics 217(1-3), 115–134 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Coutinho, S.C.: A primer of algebraic D-modules. London Mathematical Society Student Texts, vol. 33. Cambridge University Press (1995)Google Scholar
  5. 5.
    Gumberidze, A., et al: Quantum electrodynamics in strong electric fields: the ground state Lamb shift in hydrogenlike uranium. Physical Review Letters 94, 223001 (4pp) (2005)Google Scholar
  6. 6.
    Gumberidze, A., et al: Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium. Journal of Physics: Conference Series 58, 87–92 (2007)Google Scholar
  7. 7.
    Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. Journal of Symbolic Computation 9(1), 1–26 (1990)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Koutschan, C.: Advanced applications of the holonomic systems approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (2009)Google Scholar
  9. 9.
    Koutschan, C.: A fast approach to creative telescoping. Mathematics in Computer Science 4(2-3), 259–266 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Koutschan, C.: HolonomicFunctions (user’s guide). Technical Report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria (2010), http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
  11. 11.
    Paule, P., Suslov, S.K.: Relativistic Coulomb integrals and Zeilberger’s holonomic systems approach I. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation, pp. 225–241. Springer, Wien (2013)CrossRefGoogle Scholar
  12. 12.
    Puchkov, A.M.: The method of matrix elements’ calculations for the Dirac equation in the Coulomb field. Journal of Physics B: Atomic, Molecular and Optical 44, 045002 (6pp) (2010)Google Scholar
  13. 13.
    Puchkov, A.M., Labzovskiĭ, L.N.: Probabilities of forbidden magnetic-dipole transitions in the hydrogen atom and hydrogen-like ions. Optics and Spectroscopy 106(2), 181–186 (2009)Google Scholar
  14. 14.
    Puchkov, A.M., Labzovskiĭ, L.N.: Parity violation effects in hydrogen atom in forbidden magnetic-dipole transitions. Optics and Spectroscopy 108(5), 713–718 (2010)Google Scholar
  15. 15.
    Shabaev, V.M.: Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field. Journal of Physics B: Atomic, Molecular and Optical 24, 4479–4488 (1991)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Shabaev, V.M.: Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Physics Reports 356, 119–228 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Shabaev, V.M.: Virial relations for the Dirac equation and their applications to calculations of hydrogen-like atoms. In: Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 627, pp. 97–113. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Shabaev, V.M.: Quantum electrodynamics of heavy ions and atoms: current status and prospects. Physics-Uspekhi 178(11), 1220–1225 (2008) (in Russian)Google Scholar
  19. 19.
    Suslov, S.K.: Expectation values in relativistic Coulomb problems. Journal of Physics B: Atomic, Molecular and Optical 42, 185003 (8pp) (2009)Google Scholar
  20. 20.
    Suslov, S.K.: Mathematical structure of relativistic Coulomb integrals. Physical Review A 81, 032110 (2010)Google Scholar
  21. 21.
    Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Mathematics 80(2), 207–211 (1990)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Zeilberger, D.: A holonomic systems approach to special functions identities. Journal of Computational and Applied Mathematics 32(3), 321–368 (1990)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Zeilberger, D.: The method of creative telescoping. Journal of Symbolic Computation 11, 195–204 (1991)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christoph Koutschan
    • 1
  • Peter Paule
    • 2
  • Sergei K. Suslov
    • 3
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  2. 2.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityLinzAustria
  3. 3.School of Mathematical and Statistics SciencesArizona State UniversityTempeU.S.A.

Personalised recommendations