Composing and Factoring Generalized Green’s Operators and Ordinary Boundary Problems

  • Anja Korporal
  • Georg Regensburger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8372)


We consider solution operators of linear ordinary boundary problems with “too many” boundary conditions, which are not always solvable. These generalized Green’s operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green’s operators is again a generalized Green’s operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that—provided a factorization of the underlying differential operator—a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green’s operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.


Linear boundary problem singular boundary problem generalized Green’s operator reverse order law integro-differential operator factorization ordinary differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, R.P.: Boundary value problems for higher order differential equations. World Scientific Publishing Co. Inc., Teaneck (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D.: An introduction to ordinary differential equations. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Duffy, D.G.: Green’s functions with applications. Chapman & Hall/CRC, Boca Raton (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39, 171–199 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. 188(4), 123–151 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43, 515–544 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer, Wien (2012)CrossRefGoogle Scholar
  10. 10.
    Tec, L.: A Symbolic Framework for General Polynomial Domains in Theorema: Applications to Boundary Problems. PhD thesis, RISC, University of Linz (2011)Google Scholar
  11. 11.
    Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in Maple. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in Maple. ACM Commun. Comput. Algebra 46, 154–156 (2012); Software demonstration at ISSAC 2012Google Scholar
  13. 13.
    Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary Problems. PhD thesis, RISC, University of Linz (2012)Google Scholar
  14. 14.
    Loud, W.S.: Some examples of generalized Green’s functions and generalized Green’s matrices. SIAM Rev. 12, 194–210 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  16. 16.
    Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm boundary-value problems. VSP, Utrecht (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Nashed, M.Z., Rall, L.B.: Annotated bibliography on generalized inverses and applications. In: Generalized Inverses and Applications, pp. 771–1041. Academic Press, New York (1976)Google Scholar
  18. 18.
    Korporal, A., Regensburger, G.: On the product of projectors and generalized inverses. Linear Multilinear Algebra (2013) (in press) doi:10.1080/03081087.2013.839672Google Scholar
  19. 19.
    Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. (2) 83, 517–543 (2011)Google Scholar
  20. 20.
    Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 217, 495–529 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kolchin, E.R.: Differential algebra and algebraic groups. Academic Press, New York (1973)Google Scholar
  22. 22.
    Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212, 522–540 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218, 456–473 (2014), doi:10.1016/j.jpaa.2013.06.015Google Scholar
  24. 24.
    Groß, J., Trenkler, G.: On the product of oblique projectors. Linear Multilinear Algebra 44, 247–259 (1998)Google Scholar
  25. 25.
    Werner, H.J.: G-inverses of matrix products. In: Schach, S., Trenkler, G. (eds.) Data Analysis and Statistical Inference. Eul-Verlag, Bergisch Gladbach (1992)Google Scholar
  26. 26.
    Rosenkranz, M., Phisanbut, N.: A symbolic approach to boundary problems for linear partial differential equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 301–314. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anja Korporal
    • 1
  • Georg Regensburger
    • 1
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria

Personalised recommendations