Advertisement

Optimisation Problems for Pairwise RNA Sequence and Structure Comparison: A Brief Survey

  • Alain Denise
  • Philippe Rinaudo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8342)

Abstract

RNA molecules play major roles in all cell processes, and therefore have been subject to a great attention by biologists, biochemists and bioinformaticians in the recent years. From a computational optimization point of view, two interrelated major issues are on one hand the problem of structure prediction, and the problem of comparing two or several RNA sequences or structures. We present a brief survey of the latter, its variants, its computational complexity issues, and optimization algorithms that have been developed up to now.

Keywords

Optimization problems RNA structure comparison edition alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allali, J., Sagot, M.-F.: A multiple layer model to compare RNA secondary structures. Software: Practice and Experience 38, 775–792 (2008)Google Scholar
  2. 2.
    Allali, J., Saule, C., Chauve, C., D’Aubenton-Carafa, Y., Denise, A., Drevet, C., Ferraro, P., Gautheret, D., Herrbach, C., Leclerc, F., De Monte, A., Ouangraoua, A., Sagot, M.-F., Termier, M., Thermes, C., Touzet, H.: BRASERO: A resource for benchmarking RNA secondary structure comparison algorithms (2012) (submitted for publication)Google Scholar
  3. 3.
    Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8(271) (2007)Google Scholar
  4. 4.
    Blin, G., Crochemore, M., Vialette, S.: Algorithmic Aspects of Arc-Annotated Sequences. In: Zomaya Albert, Y., Mourad, E. (eds.) Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications, pp. 113–126. Wiley (February 2011)Google Scholar
  5. 5.
    Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignments of RNA structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(2), 309–322 (2010)CrossRefGoogle Scholar
  6. 6.
    Blin, G., Fertin, G., Rusu, I., Sinoquet, C.: Extending the Hardness of RNA Secondary Structure Comparison. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 140–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Blin, G., Touzet, H.: How to Compare Arc-Annotated Sequences: The Alignment Hierarchy. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 291–303. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing 32(6), 1654–1676 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Darty, K., Denise, A., Ponty, Y.: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25(15), 1974–1975 (2009)CrossRefGoogle Scholar
  10. 10.
    Dulucq, S., Tichit, L.: RNA secondary structure comparison: exact analysis of the Zhang-Shasha tree edit algorithm. Theoretical Computer Science 306(1-3), 471–484 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dulucq, S., Touzet, H.: Analysis of tree edit distance algorithms. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 83–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Eddy, R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acid Research 22(11) (1994)Google Scholar
  13. 13.
    Evans, P.A.: Algorithms and Complexity for Annotated Sequence Analysis. PhD thesis, University of Victoria (1999)Google Scholar
  14. 14.
    Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, p. 270. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Guignon, V., Chauve, C., Hamel, S.: An edit distance between RNA stem-loops. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 335–347. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Han, B., Dost, B., Bafna, V., Zhang, S.: Structural alignment of pseudoknotted RNA. Journal of Computational Biology 15(5) (2008)Google Scholar
  17. 17.
    Herrbach, C.: Étude algorithmique et statistique de la comparaison de structures secondaires d’ARN. PhD thesis, Université Bordeaux 1 (2007)Google Scholar
  18. 18.
    Herrbach, C., Denise, A., Dulucq, S.: Average complexity of the Jiang-Wang-Zhang pairwise tree alignment algorithm and of a RNA secondary structure alignment algorithm. Theoretical Computer Science 411(26-28), 2423–2432 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proc. IEEE Comput. Soc. Bioinform. Conf., pp. 159–168 (2003)Google Scholar
  20. 20.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S.L., Tacker, M., Schuster, P.: Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem. 125, 167–188 (1994)CrossRefGoogle Scholar
  21. 21.
    Jiang, T., Lin, G.-H., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)CrossRefGoogle Scholar
  22. 22.
    Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theoretical Computer Science 143, 137–148 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)Google Scholar
  24. 24.
    Klein, R.J., Eddy, S.R.: RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4(1), 44 (2003)CrossRefGoogle Scholar
  25. 25.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inform. Theory 22, 75–81 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lenhof, H., Reinert, K., Vingron, M.: A polyhedral approach to RNA sequence structure alignment. In: Proc. 2nd Ann. Int. Conf. Computational Molecular Biology (RECOMB 1998), pp. 153–159 (1998)Google Scholar
  27. 27.
    Leontis, N.B., Westhof, E.: Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001)CrossRefGoogle Scholar
  28. 28.
    Lin, G.-H., Ma, B., Zhang, K.: Edit distance between two rna structures. In: Proceedings of the Fifth Annual International Conference on Computational Biology, RECOMB 2001, pp. 211–220. ACM, New York (2001)CrossRefGoogle Scholar
  29. 29.
    Liu, J., Wang, J.T., Hu, J., Tian, B.: A method for aligning RNA secondary structures and its application to RNA motif detection. BMC Bioinformatics 6(89) (2005)Google Scholar
  30. 30.
    Mathews, D.H., Moss, W.N., Turner, D.H.: Folding and finding RNA secondary structure. Cold Spring Harbor Perspectives in Biology 2(12) (December 2010)Google Scholar
  31. 31.
    Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)CrossRefGoogle Scholar
  33. 33.
    Ouangraoua, A., Ferraro, P., Tichit, L., Dulucq, S.: Local similarity between quotiented ordered trees. J. Discrete Algorithms 5, 23–35 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ouangraoua, A., Guignon, V., Hamel, S., Chauve, C.: A new algorithm for aligning nested arc-annotated sequences under arbitrary weight schemes. Theoretical Computer Science 412(8-10 ), 753–764 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Riddihough, G.: In the forests of RNA dark matter. Science 309(5740), 1507–1507 (2005)CrossRefGoogle Scholar
  36. 36.
    Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots (extended abstract). In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 149–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Rødland, E.A.A.: Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence. Journal of Computational Biology 13(6), 1197–1213 (2006)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Sato, K., Sakakibara, Y.: RNA secondary structural alignment with conditional random fields. Bioinformatics 21(suppl. 2), ii237–ii242 (2005)Google Scholar
  39. 39.
    Shapiro, B.A.: An algorithm for comparing multiple RNA secondary structures. Computer Applications in the Biosciences 4(3), 387–393 (1988)Google Scholar
  40. 40.
    Smith, C., Heyne, S., Richter, A.S., Will, S., Backofen, R.: Freiburg rna tools: a web server integrating intarna, exparna and locarna. Nucleic Acids Research 38(suppl. 2), W373–W377 (2010)Google Scholar
  41. 41.
    Song, Y., Liu, C., Huang, X., Malmberg, R.L., Xu, Y., Cai, L.: Efficient parameterized algorithms for biopolymer structure-sequence alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4) (2006)Google Scholar
  42. 42.
    St-Onge, K., Thibault, P., Hamel, S., Major, F.: Modeling RNA tertiary structure motifs by graph-grammars. Nucleic Acids Research 35(5) (2007)Google Scholar
  43. 43.
    Weinberg, Z., Ruzzo, W.L.: Sequence-based heuristics for faster annotation of non-coding RNA families. Bioninformatics 22, 35–39 (2006)CrossRefGoogle Scholar
  44. 44.
    Wong, T.K., Yiu, S.M.: Structural alignment of RNA with triple helix structure. Journal of Computational Biology 19(4), 365–378 (2012)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wong, T.K.F., Lam, T.W., Sung, W.K., Cheung, B.W.Y., Yiu, S.M.: Structural alignment of RNA with complex pseudoknot structure. Journal of Computational Biology 18(1) (2011)Google Scholar
  46. 46.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alain Denise
    • 1
    • 2
    • 3
  • Philippe Rinaudo
    • 1
    • 3
    • 4
  1. 1.LRIUniversité Paris-Sud and CNRSFrance
  2. 2.IGMUniversité Paris-Sud and CNRSFrance
  3. 3.INRIA SaclayFrance
  4. 4.PRISMUniversité Versailles-St-Quentin and CNRSFrance

Personalised recommendations