A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width

  • Martin Fürer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

We investigate a new width parameter, the fusion-width of a graph. It is a natural generalization of the tree-width, yet strong enough that not only graphs of bounded tree-width, but also graphs of bounded clique-width, trivially have bounded fusion-width. In particular, there is no exponential growth between tree-width and fusion-width, as is the case between tree-width and clique-width. The new parameter gives a good intuition about the relationship between tree-width and clique-width.

Keywords

tree-width clique-width fusion-width FPT XP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal of Alg. and Discrete Methods 8, 277–284 (1987)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An O(c k n) 5-approximation algorithm for treewidth. In: Proc. 54th FOCS 2013, pp. 499–508. IEEE (2013)Google Scholar
  4. 4.
    Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput. Sci. 412(39), 5187–5204 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A.: Fusion in relational structures and the verification of monadic second-order properties. Mathematical Structures in Computer Science 12(2), 203–235 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101(1-3), 77–114 (2000)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Downey, R., Fellows, M.R.: Parameterized complexity. Monographs in computer science. Springer, New York (1999), Downey, R.G., Fellows, M.R. New Zealand authors. Includes bibliographical references (p. [489]-516) and indexGoogle Scholar
  13. 13.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is np-hard. In: Kleinberg, J.M. (ed.) STOC, pp. 354–362. ACM (2006)Google Scholar
  14. 14.
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)CrossRefGoogle Scholar
  17. 17.
    Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 10:1–10:20 (2008), http://doi.acm.org/10.1145/1435375.1435385 Google Scholar
  18. 18.
    Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36(1), 49–64 (1984)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics 54(2-3), 251–266 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Fürer
    • 1
  1. 1.Department of Computer Science and EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations