Budget Feasible Mechanisms for Experimental Design

  • Thibaut Horel
  • Stratis Ioannidis
  • S. Muthukrishnan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant (≈ 12.98) factor approximation for the Experimental Design Problem (EDP). By applying previous work on budget feasible mechanisms with a submodular objective, one could only have derived either an exponential time deterministic mechanism or a randomized polynomial time mechanism. We also establish that no truthful, budget-feasible mechanism is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression.


Convex Optimization Problem Combinatorial Auction Convex Relaxation Submodular Function Barrier Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. Internet Mathematics 1(2), 129–150 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Atkinson, A., Donev, A., Tobias, R.: Optimum experimental designs, with SAS. Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  4. 4.
    Badanidiyuru, A., Kleinberg, R., Singer, Y.: Learning on a budget: posted price mechanisms for online procurement. In: EC (2012)Google Scholar
  5. 5.
    Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from prior-free to bayesian. In: STOC (2012)Google Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  7. 7.
    Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: ACM STOC (2005)Google Scholar
  8. 8.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical Science, 273–304 (1995)Google Scholar
  10. 10.
    Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: SODA (2011)Google Scholar
  11. 11.
    Dobzinski, S., Papadimitriou, C.H., Singer, Y.: Mechanisms for complement-free procurement. In: ACM EC (2011)Google Scholar
  12. 12.
    Dughmi, S.: A truthful randomized mechanism for combinatorial public projects via convex optimization. In: EC (2011)Google Scholar
  13. 13.
    Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In: STOC (2011)Google Scholar
  14. 14.
    Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer Series in Statistics, vol. 1 (2001)Google Scholar
  15. 15.
    Ginebra, J.: On the measure of the information in a statistical experiment. Bayesian Analysis 2(1), 167–211 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for experimental design (2013),
  17. 17.
    Kearns, M., Pai, M.M., Roth, A., Ullman, J.: Private equilibrium release, large games, and no-regret learning (2012),
  18. 18.
    Krause, A., Guestrin, C.: A note on the budgeted maximization of submodular functions. Tech. Rep. CMU-CALD-05-103, CMU (2005)Google Scholar
  19. 19.
    Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. Journal of the ACM 58(6), 25 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Le Cam, L.: Comparison of experiments: a short review. Lecture Notes-Monograph Series, pp. 127–138 (1996)Google Scholar
  21. 21.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS (2007)Google Scholar
  22. 22.
    Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1), 58–73 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism design via differential privacy. In: ITCS (2012)Google Scholar
  24. 24.
    Pai, M., Roth, A.: Privacy and mechanism design. SIGecom Exchanges (2013)Google Scholar
  25. 25.
    Pukelsheim, F.: Optimal design of experiments. Society for Industrial Mathematics, vol. 50 (2006)Google Scholar
  26. 26.
    Singer, Y.: Budget feasible mechanisms. In: FOCS (2010)Google Scholar
  27. 27.
    Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: WSDM (2012)Google Scholar
  28. 28.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Vandenberghe, L., Boyd, S., Wu, S.: Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2), 499–533 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Vondrak, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: ACM STOC (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thibaut Horel
    • 1
  • Stratis Ioannidis
    • 2
  • S. Muthukrishnan
    • 3
  1. 1.École Normale SupérieureFrance
  2. 2.TechnicolorFrance
  3. 3.Rutgers UniversityUSA

Personalised recommendations