Advertisement

On the Stability of Generalized Second Price Auctions with Budgets

  • Josep Díaz
  • Ioannis Giotis
  • Lefteris Kirousis
  • Evangelos Markakis
  • Maria Serna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

The Generalized Second Price (GSP) auction used typically to model sponsored search auctions does not include the notion of budget constraints, which is present in practice. Motivated by this, we introduce the different variants of GSP auctions that take budgets into account in natural ways. We examine their stability by focusing on the existence of Nash equilibria and envy-free assignments. We highlight the differences between these mechanisms and find that only some of them exhibit both notions of stability. This shows the importance of carefully picking the right mechanism to ensure stable outcomes in the presence of budgets.

Keywords

Nash Equilibrium Budget Constraint Combinatorial Auction Price Auction Slot Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnon, A., Mansour, Y.: Repeated budgeted second price ad auction. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 7–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ashlagi, I., Braverman, M., Hassidim, A., Lavi, R., Tennenholtz, M.: Position auctions with budgets: existence and uniqueness. B.E. Journal of Theoretical Economics Advances (2013) (to appear)Google Scholar
  3. 3.
    Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. The American Economic Review 94(5), 1452–1475 (2004)CrossRefGoogle Scholar
  4. 4.
    Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: ACM Conference on Electronic Commerce, EC, pp. 44–51 (2005)Google Scholar
  5. 5.
    Caragiannis, I., Kaklamanis, K., Kanellopoulos, P., Kyropoulou, M., Lucier, B., Paes Leme, R., Tardos, E.: On the efficiency of equilibria in generalized second price auctions. arxiv:1201.6429 (2012)Google Scholar
  6. 6.
    Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Charles, D., Chakrabarty, D., Chickering, M., Devanur, N.R., Wang, L.: Budget smoothing for internet ad auctions: a game theoretic approach. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC 2013, pp. 163–180. ACM, New York (2013), http://doi.acm.org/10.1145/2482540.2482583 CrossRefGoogle Scholar
  8. 8.
    Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 820–832. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Colini-Baldeschi, R., Henzinger, M., Leonardi, S., Starnberger, M.: On multiple keyword sponsored search auctions with budgets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 260–269. IEEE Computer Society, Washington (2008), http://dx.doi.org/10.1109/FOCS.2008.39 CrossRefGoogle Scholar
  11. 11.
    Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. The American Economic Review 97(1), 242–259 (2007)CrossRefGoogle Scholar
  12. 12.
    Feldman, J., Muthukrishnan, S., Pal, M., Stein, C.: Budget optimization in search-based advertising auctions. In: ACM Conference on Electronic Commerce, EC, pp. 40–49 (2007)Google Scholar
  13. 13.
    Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single valued combinatorial auctions with budgets. In: Proceedings of the 12th ACM Conference on Electronic Commerce, EC 2011, pp. 223–232. ACM, New York (2011), http://doi.acm.org/10.1145/1993574.1993609 Google Scholar
  14. 14.
    Goel, G., Mirrokni, V.S., Leme, R.P.: Polyhedral clinching auctions and the adwords polytope. In: ACM Symposium on Theory of Computing, STOC, pp. 107–122 (2012)Google Scholar
  15. 15.
    Lahaie, S., Pennock, D., Saberi, A., Vohra, R.: Sponsored search auctions. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 28, pp. 699–716. Cambridge University Press (2007)Google Scholar
  16. 16.
    Lahaie, S., Pennock, D.: Revenue analysis of a family of ranking rules for keyword auctions. In: Proc. ACM Conference on Electronic Commerce, EC, San Diego, California, USA, pp. 50–56 (June 2007)Google Scholar
  17. 17.
    Maillé, P., Markakis, E., Naldi, M., Stamoulis, G.D., Tuffin, B.: Sponsored search auctions: an overview of research with emphasis on game theoretic aspects. Electronic Commerce Research 12(3), 265–300 (2012)CrossRefGoogle Scholar
  18. 18.
    Syrgkanis, V., Tardos, É.: Composable and efficient mechanisms. In: ACM Symposium on Theory of Computing, STOC 2013, pp. 211–220 (2013)Google Scholar
  19. 19.
    Varian, H.: Position auctions. International Journal of Industrial Organization 25, 1163–1178 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Josep Díaz
    • 1
  • Ioannis Giotis
    • 1
    • 2
  • Lefteris Kirousis
    • 3
  • Evangelos Markakis
    • 2
  • Maria Serna
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformaticsUniversitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Department of Informatics AthensUniversity of Economics and BusinessGreece
  3. 3.Department of Mathematics, Greece and Computer Technology Institute & Press “Diophantus”National & Kapodistrian University of AthensGreece

Personalised recommendations