The Online Connected Facility Location Problem

  • Mário César San Felice
  • David P. Williamson
  • Orlando Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

In this paper we propose the Online Connected Facility Location problem (OCFL), which is an online version of the Connected Facility Location problem (CFL). The CFL is a combination of the Uncapacitated Facility Location problem (FL) and the Steiner Tree problem (ST). We give a randomized O(log2n)-competitive algorithm for the OCFL via the sample-and-augment framework of Gupta, Kumar, Pál, and Roughgarden and previous algorithms for Online Facility Location (OFL) and Online Steiner Tree (OST). Also, we show that the same algorithm is a deterministic O(logn)-competitive algorithm for the special case of the OCFL with M = 1, where M is a scale factor for the edge costs.

Keywords

Online Algorithms Competitive Analysis Connected Facility Location Steiner Tree Approximation Algorithms Randomized Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shmoys, D.B.: Approximation algorithms for facility location problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM Journal on Computing 36, 411–432 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric facility location problem. SIAM Journal on Computing 39, 2212–2231 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and Computation 222, 45–58 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Press Syndicate of the University of Cambridge (1998)Google Scholar
  6. 6.
    Meyerson, A.: Online facility location. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 426–431 (2001)Google Scholar
  7. 7.
    Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50, 1–57 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. Journal of Discrete Algorithms 5(1), 141–148 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 303–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fotakis, D.: Online and incremental algorithms for facility location. SIGACT News 42(1), 97–131 (2011)CrossRefGoogle Scholar
  11. 11.
    Vazirani, V.: Approximation Algorithms. Springer (2003)Google Scholar
  12. 12.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2011)Google Scholar
  13. 13.
    Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Discrete Mathematics 4(3), 369–384 (1991)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science 3, 93–263 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: Simpler and better approximation algorithms for network design. Journal of the ACM 54(3), Article 11 (2007)Google Scholar
  16. 16.
    Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50, 98–119 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hasan, M.K., Jung, H., Chwa, K.Y.: Approximation algorithms for connected facility location. Journal of Combinatorial Optimization 16, 155–172 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Jung, H., Hasan, M.K., Chwa, K.Y.: A 6.55 factor primal-dual approximation algorithm for the connected facility location problem. Journal of Combinatorial Optimization 18, 258–271 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. Journal of Computer and System Sciences 76(8), 709–726 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mário César San Felice
    • 1
  • David P. Williamson
    • 2
  • Orlando Lee
    • 1
  1. 1.Institute of ComputingUnicampCampinasBrazil
  2. 2.School of Operations Research and Information EngineeringCornell UniversityIthacaUSA

Personalised recommendations