Drawing HV-Restricted Planar Graphs

  • Stephane Durocher
  • Stefan Felsner
  • Saeed Mehrabi
  • Debajyoti Mondal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


A strict orthogonal drawing of a graph G = (V, E) in ℝ2 is a drawing of G such that each vertex is mapped to a distinct point and each edge is mapped to a horizontal or vertical line segment. A graph G is HV-restricted if each of its edges is assigned a horizontal or vertical orientation. A strict orthogonal drawing of an HV-restricted graph G is good if it is planar and respects the edge orientations of G. In this paper we give a polynomial-time algorithm to check whether a given HV-restricted plane graph (i.e., a planar graph with a fixed combinatorial embedding) admits a good orthogonal drawing preserving the input embedding, which settles an open question posed by Maňuch, Patterson, Poon and Thachuk (GD 2010). We then examine HV-restricted planar graphs (i.e., when the embedding is not fixed). Here we completely characterize the 2-connected maximum-degree-three HV-restricted outerplanar graphs that admit good orthogonal drawings.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battista, G.D., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM Journal on Computing 27, 1764–1811 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 170–179. IEEE (2011)Google Scholar
  3. 3.
    Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. Journal of Graph Algorithms and Applications 16(3), 635–650 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Kim, E., Liotta, G., Lubiw, A., Whitesides, S.: The shape of orthogonal cycles in three dimensions. Discrete & Computational Geometry 47(3), 461–491 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Di Giacomo, E., Liotta, G., Patrignani, M.: Orthogonal 3D shapes of theta graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 142–149. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hoffmann, F., Kriegel, K.: Embedding rectilinear graphs in linear time. Information Processing Letters 29(2), 75–79 (1988)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(nlog2 n)-time algorithm. ACM Transactions on Algorithms 6(2), 236–245 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. International Journal of Computational Geometry and Applications 16(2-3), 249–270 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in O(nlog2 n /loglogn)-time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A(6), 1583–1588 (2005)CrossRefGoogle Scholar
  14. 14.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16(3), 421–444 (1987)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM Journal on Computing 14(2), 355–372 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends. SIAM Journal on Discrete Mathematics 22(4), 1570–1604 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Stefan Felsner
    • 2
  • Saeed Mehrabi
    • 1
  • Debajyoti Mondal
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada
  2. 2.Institut für MathematikTechnische Universität BerlinGermany

Personalised recommendations