Drawing HV-Restricted Planar Graphs

  • Stephane Durocher
  • Stefan Felsner
  • Saeed Mehrabi
  • Debajyoti Mondal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

A strict orthogonal drawing of a graph G = (V, E) in ℝ2 is a drawing of G such that each vertex is mapped to a distinct point and each edge is mapped to a horizontal or vertical line segment. A graph G is HV-restricted if each of its edges is assigned a horizontal or vertical orientation. A strict orthogonal drawing of an HV-restricted graph G is good if it is planar and respects the edge orientations of G. In this paper we give a polynomial-time algorithm to check whether a given HV-restricted plane graph (i.e., a planar graph with a fixed combinatorial embedding) admits a good orthogonal drawing preserving the input embedding, which settles an open question posed by Maňuch, Patterson, Poon and Thachuk (GD 2010). We then examine HV-restricted planar graphs (i.e., when the embedding is not fixed). Here we completely characterize the 2-connected maximum-degree-three HV-restricted outerplanar graphs that admit good orthogonal drawings.

Keywords

Banner 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battista, G.D., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM Journal on Computing 27, 1764–1811 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 170–179. IEEE (2011)Google Scholar
  3. 3.
    Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. Journal of Graph Algorithms and Applications 16(3), 635–650 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Kim, E., Liotta, G., Lubiw, A., Whitesides, S.: The shape of orthogonal cycles in three dimensions. Discrete & Computational Geometry 47(3), 461–491 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Di Giacomo, E., Liotta, G., Patrignani, M.: Orthogonal 3D shapes of theta graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 142–149. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hoffmann, F., Kriegel, K.: Embedding rectilinear graphs in linear time. Information Processing Letters 29(2), 75–79 (1988)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(nlog2 n)-time algorithm. ACM Transactions on Algorithms 6(2), 236–245 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. International Journal of Computational Geometry and Applications 16(2-3), 249–270 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in O(nlog2 n /loglogn)-time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A(6), 1583–1588 (2005)CrossRefGoogle Scholar
  14. 14.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16(3), 421–444 (1987)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM Journal on Computing 14(2), 355–372 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends. SIAM Journal on Discrete Mathematics 22(4), 1570–1604 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Stefan Felsner
    • 2
  • Saeed Mehrabi
    • 1
  • Debajyoti Mondal
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada
  2. 2.Institut für MathematikTechnische Universität BerlinGermany

Personalised recommendations