Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs

  • Prosenjit Bose
  • André van Renssen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)


We present tight upper and lower bounds on the spanning ratio of a large family of constrained θ-graphs. We show that constrained θ-graphs with 4k + 2 (k ≥ 1 and integer) cones have a tight spanning ratio of 1 + 2 sin(θ/2), where θ is 2 π/ (4k + 2). We also present improved upper bounds on the spanning ratio of the other families of constrained θ-graphs.


Induction Hypothesis Left Boundary Visibility Graph Geometric Graph Stretch Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Optimal bounds on theta-graphs: More is not always better. In: CCCG, pp. 305–310 (2012)Google Scholar
  2. 2.
    Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained bounded-degree spanners. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 85–96. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangulation. In: ISVD, pp. 25–31 (2006)Google Scholar
  4. 4.
    Bose, P., Smid, M.: On plane geometric spanners: A survey and open problems. In: CGTA (2011) (accepted)Google Scholar
  5. 5.
    Bose, P., van Renssen, A.: Upper bounds on the spanning ratio of constrained theta-graphs. CoRR, abs/1401.2127 (2014)Google Scholar
  6. 6.
    Bose, P., van Renssen, A., Verdonschot, S.: On the spanning ratio of theta-graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 182–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Clarkson, K.: Approximation algorithms for shortest path motion planning. In: STOC, pp. 56–65 (1987)Google Scholar
  8. 8.
    Das, G.: The visibility graph contains a bounded-degree spanner. In: CCCG, pp. 70–75 (1997)Google Scholar
  9. 9.
    Keil, J.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  10. 10.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)Google Scholar
  11. 11.
    Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph. In: CCCG, pp. 207–210 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • André van Renssen
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations