Least Squares Fitting of Harmonic Functions Based on Radon Projections

  • Irina Georgieva
  • Clemens Hofreither
  • Rumen Uluchev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8177)

Abstract

Given the line integrals of a harmonic function on a finite set of chords of the unit circle, we consider the problem of fitting these Radon projections type of data by a harmonic polynomial in the unit disk. In particular, we focus on the overdetermined case where the amount of given data is greater than the dimension of the polynomial space. We prove sufficient conditions for existence and uniqueness of a harmonic polynomial fitting the data by using least squares method. Combining with recent results on interpolation with harmonic polynomials, we obtain an algorithm of practical application. We extend our results to fitting of more general mixed data consisting of both Radon projections and function values. We perform a comparative numerical study of the least-squares approach with two other reconstruction methods for the case of noisy data.

Keywords

multivariate interpolation Radon transform harmonic polynomials least-squares fitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojanov, B., Georgieva, I.: Interpolation by bivariate polynomials based on Radon projections. Studia Math. 162, 141–160 (2004)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bojanov, B., Petrova, G.: Numerical integration over a disc. A new Gaussian cubature formula. Numer. Math. 80, 39–59 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bojanov, B., Petrova, G.: Uniqueness of the Gaussian cubature for a ball. J. Approx. Theory 104, 21–44 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bojanov, B., Xu, Y.: Reconstruction of a bivariate polynomial from its Radon projections. SIAM J. Math. Anal. 37, 238–250 (2005)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, Part I. Math. Z. 174, 263–279 (1980)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, Part II. In: DeVore, R., Scherer, K. (eds.) Quantitive Approximation, pp. 49–62. Acad. Press, New York (1980)Google Scholar
  7. 7.
    Davison, M.E., Grunbaum, F.A.: Tomographic reconstruction with arbitrary directions. Comm. Pure Appl. Math. 34, 77–120 (1981)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Georgieva, I., Hofreither, C.: Interpolation of harmonic functions based on Radon projections. Technical Report 2012-11, DK Computational Mathematics Linz Report Series (2012), https://www.dk-compmath.jku.at/publications/dk-reports/2012-10-17/view (submitted)
  9. 9.
    Georgieva, I., Hofreither, C., Koutschan, C., Pillwein, V., Thanatipanonda, T.: Harmonic interpolation based on Radon projections along the sides of regular polygons. Central European Journal of Mathematics (2012) (to appear); also available as Technical Report 2011-12 in the series of the DK Computational Mathematics Linz, https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-20/view
  10. 10.
    Georgieva, I., Hofreither, C., Uluchev, R.: Interpolation of mixed type data by bivariate polynomials. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol (2010); In memory of Borislav Bojanov, pp. 93–107. Prof. Marin Drinov Academic Publishing House, Sofia (2012)Google Scholar
  11. 11.
    Georgieva, I., Ismail, S.: On recovering of a bivariate polynomial from its Radon projections. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna, pp. 127–134 (2005); Prof. Marin Drinov Academic Publishing House, Sofia (2006)Google Scholar
  12. 12.
    Georgieva, I., Uluchev, R.: Smoothing of Radon projections type of data by bivariate polynomials. J. Comput. Appl. Math. 215, 167–181 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Georgieva, I., Uluchev, R.: Surface reconstruction and lagrange basis polynomials. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 670–678. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Hakopian, H.: Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J. Approx. Theory 34, 286–305 (1982)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hamaker, C., Solmon, D.C.: The angles between the null spaces of x-rays. J. Math. Anal. Appl. 62, 1–23 (1978)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Helgason, S.: The Radon Transform. In: Progress in Mathematics 5. Birkhauser, Boston (1980)Google Scholar
  17. 17.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall (1989)Google Scholar
  18. 18.
    John, F.: Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion. Math. Anal. 111, 541–559 (1935)CrossRefGoogle Scholar
  19. 19.
    Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Marr, R.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl. 45, 357–374 (1974)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Natterer, F.: The Mathematics of Computerized Tomography. Classics in Applied Mathematics, vol. 32. SIAM (2001)Google Scholar
  22. 22.
    Nikolov, G.: Cubature formulae for the disk using Radon projections. East J. Approx. 14, 401–410 (2008)MATHMathSciNetGoogle Scholar
  23. 23.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verch. Sächs. Akad. 69, 262–277 (1917)Google Scholar
  24. 24.
    Solmon, D.C.: The x-ray transform. J. Math. Anal. Appl. 56, 61–83 (1976)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Irina Georgieva
    • 1
  • Clemens Hofreither
    • 2
  • Rumen Uluchev
    • 3
  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Mathematics and InformaticsUniversity of TransportSofiaBulgaria

Personalised recommendations