Generalized Metric Energies for Continuous Shape Deformation

  • Janick Martinez Esturo
  • Christian Rössl
  • Holger Theisel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8177)


High quality deformations of planar and volumetric domains are central to many computer graphics related problems like modeling, character animation, and non-rigid registration. Besides common “as-rigid-as-possible” approaches the class of nearly-isometric deformations is highly relevant to solve this kind of problems. Recent continuous deformation approaches try to find planar first order nearly-isometric deformations by integrating along approximate Killing vector fields (AKVFs). In this work we derive a generalized metric energy for deformation vector fields that has close-to-isometric AKVFs as a special case and additionally supports close-to-length-preserving, close-to-conformal as well as close-to-equiareal deformations. Like AKVF-based deformations we minimize nonlinear energies to first order using efficient linear optimizations. Our energy formulation supports nonhomogeneous as well as anisotropic behavior and we show that it is applicable to both planar and volumetric domains. We apply energy specific regularization to achieve smoothness and provide a GPU implementation for interactivity. We compare our approach to AKVF-based deformations for the planar case and demonstrate the effectiveness of our method for the 2d and 3d case.


Shape Deformation Isometry Vector Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proc. SIGGRAPH, pp. 157–164 (2000)Google Scholar
  2. 2.
    Ben-Chen, M., Butscher, A., Solomon, J., Guibas, L.: On discrete killing vector fields and patterns on surfaces. In: Proc. SGP, pp. 1701–1711 (2010)Google Scholar
  3. 3.
    Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 34:1–34:11 (2009)CrossRefGoogle Scholar
  4. 4.
    Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: Proc. SGP, pp. 11–20 (2006)Google Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE TVCG 14(1), 213–230 (2008)Google Scholar
  6. 6.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice–Hall (1976)Google Scholar
  7. 7.
    Cashman, T.J., Hormann, K.: A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape. Comput. Graph. Forum 31(2), 735–744 (2012)CrossRefGoogle Scholar
  8. 8.
    Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. 29(4), 1–38 (2010)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 1–22 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer (2005)Google Scholar
  11. 11.
    von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. 25(3), 1118–1125 (2006)CrossRefGoogle Scholar
  12. 12.
    von Funck, W., Theisel, H., Seidel, H.P.: Explicit control of vector field based shape deformations. In: Proc. Pacific Graphics, pp. 291–300 (2007)Google Scholar
  13. 13.
    Heeren, B., Rumpf, M., Wardetzky, M., Wirth, B.: Time-discrete geodesics in the space of shells. Comp. Graph. Forum 31(5), 1755–1764 (2012)CrossRefGoogle Scholar
  14. 14.
    Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Curve and Surface Design 1999, pp. 153–162. Vanderbilt Press (2000)Google Scholar
  15. 15.
    Hormann, K., Polthier, K., Sheffer, A.: Mesh parameterization: Theory and practice. In: Proc. SIGGRAPH Asia (2008)Google Scholar
  16. 16.
    Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)CrossRefGoogle Scholar
  17. 17.
    Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)CrossRefGoogle Scholar
  18. 18.
    Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30(4), 1–78 (2011)CrossRefGoogle Scholar
  19. 19.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3) (2007)Google Scholar
  20. 20.
    Karni, Z., Freedman, D., Gotsman, C.: Energy-based image deformation. In: Proc. SGP, pp. 1257–1268 (2009)Google Scholar
  21. 21.
    Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(3), 1–64 (2007)CrossRefGoogle Scholar
  22. 22.
    Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31(4), 108:1–108:13 (2012)Google Scholar
  23. 23.
    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 78:1–78:10 (2008)Google Scholar
  24. 24.
    Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. In: Proc. SGP, pp. 1495–1504 (2008)Google Scholar
  25. 25.
    Martinez Esturo, J., Rössl, C., Theisel, H.: Continuous deformations by isometry preserving shape integration. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 456–472. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30(4), 1–37 (2011)CrossRefGoogle Scholar
  27. 27.
    Minka, T.P.: Old and new matrix algebra useful for statistics. Tech. rep., MIT (2001)Google Scholar
  28. 28.
    Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proc. SCA, pp. 49–54 (2002)Google Scholar
  29. 29.
    Solomon, J., Ben-Chen, M., Butscher, A., Guibas, L.: As-killing-as-possible vector fields for planar deformation. Comput. Graph. Forum 30(5), 1543–1552 (2011)CrossRefGoogle Scholar
  30. 30.
    Solomon, J., Ben-Chen, M., Butscher, A., Guibas, L.: Discovery of intrinsic primitives on triangle meshes. Comput. Graph. Forum 30(2), 365–374 (2011)CrossRefGoogle Scholar
  31. 31.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proc. SGP, pp. 109–116 (2007)Google Scholar
  32. 32.
    Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn cartoon animations. In: Proc. NPAR, pp. 25–33 (2009)Google Scholar
  33. 33.
    Weber, O., Ben-Chen, M., Gotsman, C., Hormann, K.: A complex view of barycentric mappings. Comput. Graph. Forum 30(5), 1533–1542 (2011)CrossRefGoogle Scholar
  34. 34.
    Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Comput. Graph. Forum 31(5), 1679–1689 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Janick Martinez Esturo
    • 1
    • 2
  • Christian Rössl
    • 1
  • Holger Theisel
    • 1
  1. 1.Visual Computing GroupUniversity of MagdeburgGermany
  2. 2.Max Planck Institute for Computer ScienceSaarland UniversityGermany

Personalised recommendations