Exploiting the Implicit Support Function for a Topologically Accurate Approximation of Algebraic Curves

  • Eva Blažková
  • Zbyněk Šír
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8177)


Describing the topology of real algebraic curves is a classical problem in computational algebraic geometry. It is usually based on algebraic techniques applied directly to the curve equation. We use the implicit support function representation for this purpose which can in certain cases considerably simplify this task. We describe possible strategies and demonstrate them on a simple example. We also exploit the implicit support function for a features-preserving approximation of the graph topologically equivalent to the curve. This contribution is meant as a first step towards an algorithm combining classical approaches with the dual description via the support function.


algebraic curve support function critical points approximation trigonometric polynomial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M., Jüttler, B., Gonzalez-Vega, L., Schicho, J.: Parametrizing surfaces with certain special support functions, including offsets of quadrics and rationally supported surfaces. Journal of Symbolic Computation 44, 180–191 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aigner, M., Gonzalez-Vega, L., Jüttler, B., Sampoli, M.L.: Computing isophotes on free-form surfaces based on support function approximation. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 1–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bastl, B., Lávička, M., Šír, Z.: G 2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 142–156. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangements computation of semi-algebraic planar curves. Computer Aided Geometric Design 25, 631–651 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer (2006)Google Scholar
  6. 6.
    Eigenwilling, A., Kerber, M., Wolpert, N.: Fast and Exact Geometric Analysis of Real Algebraic Plane Curves. In: Brown, C.W. (ed.) Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation (ISSAC 2007), pp. 151–158. ACM (2007)Google Scholar
  7. 7.
    Gonzalez-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Computer Aided Geometric Design 19, 719–749 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gravesen, J.: Surfaces parametrised by the normals. Computing 79, 175–183 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gravesen, J., Jütter, B., Šír, Z.: Approximating Offsets of Surfaces by using the Support Function Representation. In: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (eds.) Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 719–723. Springer (2007)Google Scholar
  10. 10.
    Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Comput. Aided Geom. Design 5(4-5), 320–331 (2008)CrossRefGoogle Scholar
  11. 11.
    Gruber, P.M., Wills, J.M.: Handbook of convex geometry. North–Holland, Amsterdam (1993)Google Scholar
  12. 12.
    Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. Mathematics and Computers in Simulation 42, 571–582 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cheng, J., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the Topology of Planar Algebraic Curves. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 361–370. ACM, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Lávička, M., Bastl, B., Šír, Z.: Reparameterization of curves and surfaces with respect to convolutions. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 285–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations. Technical Report VTO/MS/207, British Aircraft Corporation (1974), http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.html
  16. 16.
    Seidel, R., Wolpert, N.: On the exact computation of the topology of real algebraic curves. In: Proceedings of 21st Annual Symposium on Computational Geometry, pp. 107–115. ACM, New York (2005)Google Scholar
  17. 17.
    Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Computer Aided Geometric Design 27, 405–417 (2010)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer Science 392, 141–157 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Walker, R.J.: Algebraic Curves. Springer (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eva Blažková
    • 1
  • Zbyněk Šír
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic

Personalised recommendations