Planar Parametrization in Isogeometric Analysis

  • Jens Gravesen
  • Anton Evgrafov
  • Dang-Manh Nguyen
  • Peter Nørtoft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8177)


Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape optimization. It utilizes an expensive non-linear method for constructing/updating a high quality reference parametrization, and an inexpensive linear method for maintaining the parametrization in the vicinity of the reference one. We describe several linear and non-linear parametrization methods, which are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples.


Isogeometric analysis shape optimization parametrization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choquet, G.: Sur un type de transformation analytique généralisant la représentation conforme et définé au moyen de fonctions harmoniques. Bull. Sci. Math. 69, 156–165 (1945)MATHMathSciNetGoogle Scholar
  2. 2.
    Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Meth. Appl. Mech. Engrg. 199, 334–356 (2010)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Meth. Appl. Mech. Engrg. 195, 5257–5296 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Chichester (2009)CrossRefGoogle Scholar
  5. 5.
    Duren, P., Hengartner, W.: Harmonic Mappings of Multiply Connected Domains. Pac. J. Math. 180, 201–220 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Farin, G., Hansford, D.: Discrete Coons Patches. Comput. Aided Geom. Des. 16, 691–700 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Farrashkhalvat, M., Miles, J.P.: Basic Structured Grid Generation: With an introduction to unstructured grid generation. Butterworth-Heinemann, Burlington (2003)Google Scholar
  8. 8.
    Floater, M.S.: Mean Value Coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Floater, M.S., Hormann, K.: Parameterization of Triangulations and Unorganized Points. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 287–315. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Floater, M.S., Hormann, K.: Surface Parameterization: a Tutorial and Survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gravesen, J., Evgrafov, A., Gersborg, A.R., Nguyen, D.M., Nielsen, P.N.: Isogeometric Analysis and Shape Optimisation. In: Eriksson, A., Tibert, G. (eds.) Proc. of the 23rd Nordic Seminar on Computational Mechanics, pp. 14–17 (2010)Google Scholar
  12. 12.
    Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Laurent, P.-J., Sablonnire, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999. Innovations in Applied Mathematics, pp. 153–162. Vanderbilt University Press, Nashville (2000)Google Scholar
  13. 13.
    Hormann, K., Floater, M.S.: Mean Value Coordinates for Arbitrary Planar Polygons. ACM Transactions on Graphics 25, 1424–1441 (2006)CrossRefGoogle Scholar
  14. 14.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement. Comput. Meth. Appl. Mech. Engrg. 194, 4135–4195 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Khattri, S.K.: Grid Generation and Adaptation by Functionals. Comput. Appl. Math. 26, 235–249 (2007)MATHMathSciNetGoogle Scholar
  16. 16.
    Kneser, H.: Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35, 123–124 (1926)Google Scholar
  17. 17.
    Knupp, P.M.: Algebraic Mesh Quality Metrics. SIAM J. Sci. Comput. 23, 193–218 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Liao, G.: Variational Approach to Grid Generation. Num. Meth. Part. Diff. Eq. 8, 143–147 (1992)CrossRefMATHGoogle Scholar
  19. 19.
    MATLAB. Version (R2012a) The MathWorks Inc. Natick, Massachusetts (2012)Google Scholar
  20. 20.
    Martin, T., Cohen, E., Kirby, R.M.: Volumetric Parameterization and Trivariate B-Spline Fitting Using Harmonic Functions. Comput. Aided Geom. Des. 26, 648–664 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Nguyen, D.M., Nielsen, P.N., Evgrafov, A., Gersborg, A.R., Gravesen, J.: Parametrisation in Iso Geometric Analysis: A first report, DTU (2009),
  22. 22.
    Nguyen, D.M., Evgrafov, A., Gersborg, A.R., Gravesen, J.: Isogeometric Shape Optimization of Vibrating Membranes. Comput. Meth. Appl. Mech. Engrg. 200, 1343–1353 (2011)CrossRefMATHGoogle Scholar
  23. 23.
    Nguyen, D.M., Evgrafov, A., Gravesen, J.: Isogeometric Shape Optimization for Electromagnetic scattering problems. Prog. in Electromagn. Res. B 45, 117–146 (2012)CrossRefGoogle Scholar
  24. 24.
    Nguyen, T., Jüttler, B.: Parameterization of Contractible Domains Using Sequences of Harmonic Maps. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 501–514. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Nguyen, T., Mourain, B., Galigo, A., Xu, G.: A Construction of Injective Parameterizations of Domains for Isogeometric Applications. In: Proc. of the 2011 International Workshop on Symbolic-Numeric Computation, pp. 149–150. ACM, New York (2012)Google Scholar
  26. 26.
    Nørtoft, P., Gravesen, J.: Isogeometric Shape Optimization in Fluid Mechanics, Struct. Multidiscip. Opt., doi:10.1007/s00158-013-0931-8Google Scholar
  27. 27.
    Octave community: GNU/Octave (2012),
  28. 28.
    Radó, T.: Aufgabe 41. Jahresber. Deutsch. Math.-Verein. 35, 49 (1926)Google Scholar
  29. 29.
    Sheffer, A., Praun, E., Rose, K.: Mesh Parameterization Methods and their Applications. Foundations and Trends in Computer Graphics and Vision 2, 105–171 (2006)CrossRefGoogle Scholar
  30. 30.
    Wächter, A., Biegler, L.T.: On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math. Program. 106, 25–57 (2006)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric Structural Shape Optimization. Comput. Meth. Appl. Mech. Engrg. 197, 2976–2988 (2008)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Weber, O., Ben-Chen, M., Gotsman, C., Hormann, K.: A complex view of barycentric mappings. Computer Graphics Forum 30, 1533–1542 (2011); Proc. of SGPCrossRefGoogle Scholar
  33. 33.
    Winslow, A.: Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh. J. Comput. Phys. 2, 149–172 (1967)MathSciNetGoogle Scholar
  34. 34.
    Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 236–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parameterization of Computational Domain in Isogeometric Analysis: Methods and Comparison. Comput. Meth. Appl. Mech. Engrg. 200, 2021–2031 (2011)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jens Gravesen
    • 1
  • Anton Evgrafov
    • 1
  • Dang-Manh Nguyen
    • 2
  • Peter Nørtoft
    • 3
  1. 1.Dept. of Appl. Math. & Comp. Sci.Technical University of DenmarkDenmark
  2. 2.Institute of Applied GeometryJohannes Kepler UniversityAustria
  3. 3.Applied MathematicsSINTEF ICTNorway

Personalised recommendations