Graph-Based Dispute Derivations in Assumption-Based Argumentation

  • Robert Craven
  • Francesca Toni
  • Matthew Williams
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8306)


Arguments in structured argumentation are usually defined as trees. This introduces both conceptual redundancy and inefficiency in standard methods of implementation. We introduce rule-minimal arguments and argument graphs to solve these problems, studying their use in assumption-based argumentation (ABA), a well-known form of structured argumentation. In particular, we define a new notion of graph-based dispute derivations for determining acceptability of claims under the grounded semantics in ABA, study formal properties and present an experimental evaluation thereof.


Deductive System Structure Argumentation Abstract Argumentation Defeasible Logic Opponent Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170, 114–159 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intellgence 171(10-15), 642–674 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in AI, pp. 25–44. Springer (2009)Google Scholar
  5. 5.
    Toni, F.: A generalised framework for dispute derivations in assumption-based argumentation. In: Artificial Intelligence (2012) (in press)Google Scholar
  6. 6.
    Dung, P.: On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Craven, R., Toni, F., Hadad, A., Cadar, C., Williams, M.: Efficient support for medical argumentation. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proc. 13th International Conference on Principles of Knowledge Representation and Reasoning, pp. 598–602. AAAI Press (2012)Google Scholar
  8. 8.
    Matt, P.A., Toni, F., Stournaras, T., Dimitrelos, D.: Argumentation-based agents for eprocurement. In: Berger, M., Burg, B., Nishiyama, S. (eds.) Proceedings of the 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008)- Industry and Applications Track, pp. 71–74 (2008)Google Scholar
  9. 9.
    Modgil, S., Prakken, H.: A general account of argumentation with preferences. In: Artificial Intelligence (2012) (in press)Google Scholar
  10. 10.
    García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)Google Scholar
  12. 12.
    Amgoud, L.: The outcomes of logic-based argumentation systems under preferred semantics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 72–84. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Thang, P.M., Dung, P.M., Hung, N.D.: Towards a common framework for dialectical proof procedures in abstract argumentation. Journal of Logic and Computation 19(6), 1071–1109 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Toni, F.: Reasoning on the web with assumption-based argumentation. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 370–386. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Williams, M., Hunter, A.: Harnessing Ontologies for Argument-Based Decision-Making in Breast Cancer. In: ICTAI (2), pp. 254–261. IEEE Computer Society (2007)Google Scholar
  16. 16.
    NCI: Breast Cancer PDQ (Stage I, II, IIA, and operable IIIC Breast Cancer) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Robert Craven
    • 1
  • Francesca Toni
    • 1
  • Matthew Williams
    • 2
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.Faculty of MedicineImperial College LondonUK

Personalised recommendations