The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

  • Eun Jung Kim
  • Sebastian Ordyniak
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8306)


We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given.
  • The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set).

  • The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument.

  • The Center problem asks whether, given two extensions of distance k, whether there is a “center” extension that is of distance at most k − 1 from both given extensions.

We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results cover several different semantics, including admissible, complete, preferred, semi-stable and stable semantics.


Maximum Degree Parameterized Complexity Abstract Argumentation Argumentation Framework Previous Claim 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer (2009)Google Scholar
  2. 2.
    Baumann, R.: What does it take to enforce an argument? minimal change in abstract argumentation. In: De Raedt, L., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012 - 20th European Conference on Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS 2012) System Demonstrations Track, Montpellier, France, August 27-31. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 127–132. IOS Press (2012)Google Scholar
  3. 3.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Computational Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10. Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 75–86. IOS Press (2010)Google Scholar
  4. 4.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619–641 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Booth, R., Caminada, M., Podlaszewski, M., Rahwan, I.: Quantifying disagreement in argument-based reasoning. In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.) International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, IFAAMAS, Valencia, Spain, June 4-8, 3 Volumes, pp. 493–500 (2012)Google Scholar
  6. 6.
    Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Revision of an argumentation system. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19, pp. 124–134 (2008)Google Scholar
  7. 7.
    Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theoretical Computer Science 170(1-2), 209–244 (1996)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Downey, R., Egan, J., Fellows, M.: Frances Rosamond, and Peter Shaw. Solving hard problems incrementally. In: Presentation at the Workshop on Parameterized Complexity and the Understanding, Design and Analysis of Heuristics, Shonan Village Center, Japan, May 6-11 (2013)Google Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artificial Intelligence 171(10-15), 701–729 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelligence 141(1-2), 187–203 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dunne, P.E., Caminada, M.: Computational complexity of semi-stable semantics in abstract argumentation frameworks. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 153–165. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, L., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer (2009)Google Scholar
  16. 16.
    Dvorák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract argumentation. Artificial Intelligence 186, 157–173 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dvorák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artificial Intelligence 186, 1–37 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Dvořák, W., Szeider, S., Woltran, S.: Abstract argumentation via monadic second order logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 85–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Dvořák, W., Woltran, S.: On the intertranslatability of argumentation semantics. In: Proceedings of the Conference on Thirty Years of Nonmonotonic Reasoning (NonMon@30), Lexington, KY, USA (2010)Google Scholar
  20. 20.
    Dvořák, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded clique-width. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of COMMA 2010, Computational Models of Argumentation. Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 219–230. IOS (2010)Google Scholar
  21. 21.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  22. 22.
    Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conservation. Theoretical Computer Science 494, 86–98, 213Google Scholar
  24. 24.
    Kim, E.J., Ordyniak, S., Szeider, S.: Algorithms and complexity results for persuasive argumentation. Artificial Intelligence 175, 1722–1736 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kreutzer, S.: Algorithmic meta-theorems. Electronic Colloquium on Computational Complexity (ECCC) 16, 147 (2009)Google Scholar
  26. 26.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. of Computer and System Sciences 67(4), 757–771 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer (2009)Google Scholar
  29. 29.
    Seese, D.: Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6(6), 505–526 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eun Jung Kim
    • 1
  • Sebastian Ordyniak
    • 2
  • Stefan Szeider
    • 3
  1. 1.CNRSLAMSADEParisFrance
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations