Advertisement

Lasers, Light Beams and Light Pulses

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)

Abstract

We still use a classical wave description of light, but start in Sect. 1.1 with a brief introduction into the physics of lasers – certainly the most important tools of modern optics and spectroscopy. In Sect. 1.2 Gaussian light beams are explored, and their manipulation and measurement is illustrated. Section 1.3 gives a precise definition of polarization and describes some experimental tools for its characterization. Wave-packets are discussed in Sect. 1.4, with focus on short pulses as interesting examples from current research. Section 1.5 introduces “correlation functions” and describes methods for determining short pulse durations. Finally, in Sect. 1.6 we explore some characteristics of intense laser fields – a topic of great importance in present research – and thus transcend classical, linear spectroscopy.

Keywords

Autocorrelation Function Gaussian Beam Second Harmonic Generation Population Inversion Amplify Spontaneous Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms and Terminology

ADP:

‘Ammonium dihydorgen phosphate’, crystal, birefringent, piezoelectric, used also in nonlinear optics.

ASE:

‘Amplified spontaneous emission’, may occur in (long) optical amplifier media with high gain.

BBO:

‘Beta barium borate’, crystal, birefringent, excellent nonlinear optical properties, piezoelectric.

BPP:

‘Beam parameter product’, characterizing the quality of a laser beam (see Chap. 1, Eq. (1.69)).

c.c.:

‘complex conjugate’.

CW:

‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.

FPI:

Fabry-Pérot interferometer’, for high precision spectroscopy and laser resonators (see Sect.  6.1.2 in Vol. 1).

FSR:

‘Free spectral range’, of an optical interferometer (see Sect.  6.1.2 in Vol. 1).

FT:

Fourier transform’, see Appendix I in Vol. 1.

FWHM:

‘Full width at half maximum’.

LHC:

‘Left hand cicularly’, polarized light, also σ + light.

MPI:

‘Multi-photon ionization’, ionization of atoms or molecules by simultaneous absorption of several photons.

RF:

‘Radio frequency’, range of the electromagnetic spectrum. Technically, one includes frequencies from 3 kHz up to 300 GHz or wavelengths from 100 km to 1 mm; ISO 21348 (2007) defines the RF wavelengths from 100 m to 0.1 mm; in spectroscopy RF usually refers to 100 kHz up to some GHz.

RHC:

‘Right hand cicularly’, polarized light, also σ light.

SHG:

‘Second harmonic generation’, doubling of a fundamental frequency, for infrared or visible light typically by methods of nonlinear optics.

SVE:

‘Slowly varying envelope’, approximation for electromagnetic waves (see Sect. 1.2.1, specifically Eq. (1.38)).

TEM:

‘Transversally electric and magnetic’, modes of an electromagnetic wave.

Ti:Sapph:

‘Titanium-sapphire laser’, the ‘workhorse’ of ultra fast laser science.

TOF:

‘Time of flight’, measurement to determine velocities of charged particles, and consequently their energies (if the mass to charge ratio is known) or their mass to charge ratio (if their energy is known).

References

  1. Bloembergen, N. and A. L. Shawlow: 1981. ‘The Nobel prize in physics “for their contribution to the development of laser spectroscopy” ’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1981/.
  2. Born, M. and E. Wolf: 2006. Principles of Optics. Cambridge: Cambridge University Press, 7th (expanded) edn. Google Scholar
  3. Cervenan, M. R. and N. R. Isenor: 1975. ‘Multi-photon ionization yield curves for Gaussian laser-beams’. Opt. Commun., 13, 175–178. CrossRefADSGoogle Scholar
  4. Einstein, A.: 1916. ‘Strahlungs-Emission und -Absorption nach der Quantentheorie’. Verh. Dtsch. Phys. Ges., 18, 318–323. Google Scholar
  5. Gordon, J. P., H. J. Zeiger and C. H. Townes: 1955. ‘Maser – new type of microwave amplifier, frequency standard, and spectrometer’. Phys. Rev., 99, 1264–1274. CrossRefADSGoogle Scholar
  6. Hall, J. L. and T. W. Hänsch: 2005. ‘The Nobel prize in physics: for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/2005/.
  7. Hankin, S. M., D. M. Villeneuve, P. B. Corkum and D. M. Rayner: 2001. ‘Intense-field laser ionization rates in atoms and molecules’. Phys. Rev. A, 6401, 013405. CrossRefADSGoogle Scholar
  8. Hänsch, T. W.: 2005. ‘Nobel lecture: Passion for precision’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html.
  9. Hertel, I. V. I. Shchatsinin, T. Laarmann, N. Zhavoronkov, H.-H. Ritze and C. P. Schulz: 2009. ‘Fragmentation and ionization dynamics of C60 in elliptically polarized femtosecond laser fields’. Phys. Rev. Lett., 102, 023003. CrossRefADSGoogle Scholar
  10. Hodgson, N. and H. Weber: 2005. Laser Resonators and Beam Propagation, vol. 108 of Springer Series in Optical Sciences. Berlin: Springer, 2nd edn., 824 pages. Google Scholar
  11. ISO 21348: 2007. ‘Space environment (natural and artificial) – Process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland. Google Scholar
  12. Javan, A., W. R. Bennett and D. R. Herriott: 1961. ‘Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture’. Phys. Rev. Lett., 6, 106–110. CrossRefADSGoogle Scholar
  13. Kogelnik, H. and T. Li: 1966. ‘Laser beams and resonators’. Appl. Opt., 5, 1550–1567. CrossRefADSGoogle Scholar
  14. Lindner, F., G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius and F. Krausz: 2004. ‘Gouy phase shift for few-cycle laser pulses’. Phys. Rev. Lett., 92, 113001. CrossRefADSGoogle Scholar
  15. Maiman, T. H.: 1960. ‘Optical and microwave-optical experiments in ruby’. Phys. Rev. Lett., 4, 564–566. CrossRefADSGoogle Scholar
  16. Milloni, P. W. and J. H. Eberly: 2010. Laser Physics. Hoboken: Wiley, 832 pages. CrossRefGoogle Scholar
  17. Schäfer, F. P., W. Schmidt and J. Volze: 1966. ‘Organic dye solution laser’. Appl. Phys. Lett., 9, 306–309. CrossRefADSGoogle Scholar
  18. Schawlow, A. L. and C. H. Townes: 1958. ‘Infrared and optical masers’. Phys. Rev., 112, 1940–1949. CrossRefADSGoogle Scholar
  19. Schmidt, A. et al.: 2010. ‘Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration’. Opt. Lett., 35, 511–513. CrossRefADSGoogle Scholar
  20. Shchatsinin, I., H.-H. Ritze, C. P. Schulz and I. V. Hertel: 2009. ‘Multi-photon excitation and ionization by elliptically polarized, intense short laser pulses: Recognizing multi-electron dynamics and doorway states in C60 vs. Xe’. Phys. Rev. A, 79, 053414. CrossRefADSGoogle Scholar
  21. Shchatsinin, I., T. Laarmann, G. Stibenz, G. Steinmeyer, A. Stalmashonak, N. Zhavoronkov, C. P. Schulz and I. V. Hertel: 2006. ‘C60 in intense short pulse laser fields down to 9 fs: excitation on time scales below e-e and e-phonon coupling’. J. Chem. Phys., 125, 194320. CrossRefADSGoogle Scholar
  22. Siegman, A. E.: 1986. Lasers. Sausalito: University Science Books, 1283 pages. Google Scholar
  23. Sorokin, P. P. and J. R. Lankard: 1966. ‘Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine’. IBM J. Res. Dev., 10, 162–163. CrossRefGoogle Scholar
  24. Speiser, S. and J. Jortner: 1976. ‘3/2 power law for high-order multi-photon processes’. Chem. Phys. Lett., 44, 399–403. CrossRefADSGoogle Scholar
  25. Steinmeyer, G.: 2010. ‘Interferometric determination of the autocorrelation function of a sub 20 fs laser pulse’. Private communication. Google Scholar
  26. Strickland, D. and G. Mourou: 1985. ‘Compression of amplified chirped optical pulses’. Opt. Commun., 56, 219–221. CrossRefADSGoogle Scholar
  27. Strohaber, J. and C. J. G. J. Uiterwaal: 2008. ‘In situ measurement of three-dimensional ion densities in focused femtosecond pulses’. Phys. Rev. Lett., 100, 023002. CrossRefADSGoogle Scholar
  28. Udem, T., R. Holzwarth and T. W. Hänsch: 2002. ‘Optical frequency metrology’. Nature, 416, 233–237. CrossRefADSGoogle Scholar
  29. Weisstein, E. W.: 2004. ‘En-function’, Wolfram Research, Inc., Champaign, IL, USA. http://mathworld.wolfram.com/En-Function.html, accessed: 9 Jan 2014.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations