A System for Combined Visualization of EEG and Diffusion Tensor Imaging Tractography Data

  • Alexander Wiebel
  • Cornelius Müller
  • Christoph Garth
  • Thomas R. Knösche
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this paper we present an interactive system that integrates the visual analysis of nerve fiber pathway approximations from diffusion tensor imaging (DTI) with electroencephalography (EEG) data. The technique uses source reconstructions from EEG data to define certain regions of interest in the brain. These regions, in turn, are used to selectively display subsets of the approximated fiber pathways in the brain. The selected pathways highlight potential connections from activated areas to other parts of the brain and can thus help to understand networks on which most higher brain function relies. Users can explore the neuronal network and activity by navigating in an EEG curve view. The navigation is supported by optional mechanisms like snapping to time points with present reconstructed dipoles and visual cues highlighting such points. To the best of our knowledge, the presented combination of time navigation in EEG curves together with DTI pathway selection at the corresponding dipole positions is new and has not been described before. The presented methods are freely available in an open source system for visualization and analysis in neuroscience.


Diffusion tensor imaging Tractography Visualization EEG Reconstructed Dipoles GUI 



We thank the OpenWalnut community for providing their software as basis for implementing the presented techniques. We are also grateful to Gerik Scheuermann and his group at the University of Leipzig, who provided an enjoyable and inspiring environment for Cornelius Müller’s work on his master’s thesis. The reviewers made many very valuable suggestions, we would like to thank them for this. This work was partly supported by the AiF (ZIM grant KF 2034701SS8).


  1. 1.
    ANT BV.: ASA Getting Started. ANT BV, Enschede (Sept 2009)Google Scholar
  2. 2.
    Berman, J.I., Chung, S., Mukherjee, P., Hess, C.P., Han, E.T., Henry, R.G.: Probabilistic streamline q-ball tractography using the residual bootstrap. NeuroImage 39(1), 215–222 (2008)CrossRefGoogle Scholar
  3. 3.
    Blaas, J., Botha, C.P., Peters, B., Vos, F.M., Post, F.H.: Fast and reproducible fiber bundle selection in DTI visualization. In: Silva, C., Gröller, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization 2005, Minneapolis, pp. 59–64 (2005)Google Scholar
  4. 4.
    Dalal, S.S., Zumer, J.M., Guggisberg, A.G., Trumpis, M., Wong, D.D.E., Sekihara, K., Nagarajan, S.S.: MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG. Comput. Intell. Neurosci. 2011(3), 1–17 (2011)CrossRefGoogle Scholar
  5. 5.
    Eichelbaum, S., Hlawitschka, M., Wiebel, A., Scheuermann, G.: OpenWalnut – an open-source visualization system. In: Benger, W., Gerndt, A., Su, S., Schoor, W., Koppitz, M., Kapferer, W., Bischof, H.-P., Pierro, M.D. (eds.) Proceedings of 6th High-End Visualization Workshop, Obergurgl, pp. 76–78 (2010)Google Scholar
  6. 6.
    Fillard, P., Toussaint, N., Pennec, X.: MedINRIA: DT-MRI processing and visualization software. In: Guest Paper at the Similar Tensor Workshop, Las Palmas, Nov 2006Google Scholar
  7. 7.
    Goldau, M., Wiebel, A., Hlawitschka, M., Scheuermann, G., Tittgemeyer, M.: Visualizing DTI parameters on boundary surfaces of white matter fiber bundles. In: Zhang, J. (ed.) Proceedings of the Twelfth IASTED International Conference on Computer Graphics and Imaging, Innsbruck, pp. 53–61. International Association of Science and Technology for Development, ACTA Press, Feb 2011Google Scholar
  8. 8.
    Jang, S.H., Ahn, S.H., Ha, J.S., Lee, S.J., Lee, J., Ahn, Y.H.: Peri-infarct reorganization in a patient with corona radiata infarct: a combined study of functional MRI and diffusion tensor image tractography. Restor. Neurol. Neurosci. 24(2), 65–68 (2006)Google Scholar
  9. 9.
    Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M., Smith, S.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  10. 10.
    Jeong, W.-K., Fletcher, P.T., Tao, R., Whitaker, R.: Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver. IEEE Trans. Vis. Comput. Graph. 13(6), 1480–1487 (2007)CrossRefGoogle Scholar
  11. 11.
    Johnson, C.R., MacLeod, R., Parker, S.G., Weinstein, D.: Biomedical computing and visualization software environments. Commun. ACM 47(11), 64–71 (2004)CrossRefGoogle Scholar
  12. 12.
    Kindlmann, G.: Visualization and analysis of diffusion tensor fields. PhD thesis, School of Computing, University of Utah (2004)Google Scholar
  13. 13.
    Knösche, T.R.: Solutions of the neuroelectromagnetic inverse problem – an evaluation study. PhD thesis, Universiteit Twente (1997)Google Scholar
  14. 14.
    Knösche, T.R., Praamstra, P., Stegeman, D., Peters, M.: Linear estimation discriminates midline sources and a motor cortex contribution to the readiness potential. Electroencephalogr. Clin. Neurophysiol. 99(2), 183–190 (1996)CrossRefGoogle Scholar
  15. 15.
    Lowe, M.J., Horenstein, C., Hirsch, J.G., Marrie, R.A., Stone, L., Bhattacharyya, P.K., Gass, A., Phillips, M.D.: Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. NeuroImage 32(3), 1127–1133 (2006)CrossRefGoogle Scholar
  16. 16.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies – a technical review. NMR Biomed. 15(7–8), 468–480 (2002)CrossRefGoogle Scholar
  17. 17.
    Müller, C.: Kombinierte visualisierung von EEG – und diffusions-MRT-Nervenfaser-Daten. master’s thesis, Fakultät für Mathematik und Informatik, Universität Leipzig (2010)Google Scholar
  18. 18.
    Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)CrossRefGoogle Scholar
  19. 19.
    Scherg, M.: Functional imaging and localization of electromagnetic brain activity. Brain Topogr. 5(2), 103–111 (1992)CrossRefGoogle Scholar
  20. 20.
    Schmidt, V.A.: User interface design patterns. Technical report, DTIC Document (2010)Google Scholar
  21. 21.
    Schonberg, T., Pianka, P., Hendler, T., Pasternak, O., Assaf, Y.: Characterization of displaced white matter by brain tumors using combined DTI and fMRI. NeuroImage 30(4), 1100–1111 (2006)CrossRefGoogle Scholar
  22. 22.
    Smies, R.: Libeep. Last accessed 2012-04-13
  23. 23.
    Sourina, O., Sourin, A., Kulish, V.: EEG data driven animation and its application. In: Gagalowicz, A., Philips, W. (eds.) Computer Vision/Computer Graphics Collaboration Techniques. Lecture Notes in Computer Science, vol. 5496, pp. 380–388. Springer, Berlin/ Heidelberg (2009)Google Scholar
  24. 24.
    Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, Article ID 879716 (2011)Google Scholar
  25. 25.
    ten Caat, M.: Multichannel EEG visualization. PhD thesis, Institute of Mathematics and Computing Science, University of Groningen (2008)Google Scholar
  26. 26.
    Toussaint, N., Souplet, J.C., Fillard, P.: MedINRIA: medical image navigation and research tool by INRIA. In: Proceedings of MICCAI’07 Workshop on Interaction in Medical Image Analysis and Visualization, Brisbane (2007)Google Scholar
  27. 27.
    Wagner, M., Fuchs, M.: Integration of functional MRI, structural MRI, EEG, and MEG. Int. J. Bioelectromagn. 3(1), (2001)Google Scholar
  28. 28.
    Weiland, B., Moran, J., Bowyer, S., Smith, B., Barkley, G., Tepley, N.: DTI fiber tracts connect epileptic networks imaged with MEG coherence analysis. In: 16th International Conference on Biomagnetism, Sapporo, Aug 2008. Japan Biomagnetism and Bioelectromagnetics SocietyGoogle Scholar
  29. 29.
    Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of IEEE Visualization ’99, Los Alamitos, pp. 249–253 (1999)Google Scholar
  30. 30.
    Wolters, C.H., Anwander, A., Tricoche, X., Lew, S., Johnson, C.R.: Influence of local and remote white matter conductivity anisotropy for a thalamic source on EEG/MEG field and return current computation. Int. J. Bioelectromagn. 7, 203–206(2005)Google Scholar
  31. 31.
    Zanow, F., Knösche, T.: ASA – advanced source analysis of continuous and event-related EEG/MEG signals. Brain Topogr. 16(4), 287–290 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander Wiebel
    • 1
    • 2
  • Cornelius Müller
    • 3
  • Christoph Garth
    • 3
  • Thomas R. Knösche
    • 4
  1. 1.Zuse Institute Berlin (ZIB)BerlinGermany
  2. 2.Coburg University of Applied SciencesCoburgGermany
  3. 3.Technische Universität KaiserslauternKaiserslauternGermany
  4. 4.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations