Top Challenges in the Visualization of Engineering Tensor Fields

  • Mario Hlawitschka
  • Ingrid Hotz
  • Andrea Kratz
  • G. Elisabeta Marai
  • Rodrigo Moreno
  • Gerik Scheuermann
  • Markus Stommel
  • Alexander Wiebel
  • Eugene Zhang
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

In this chapter we summarize the top research challenges in creating successful visualization tools for tensor fields in engineering. The analysis is based on our collective experiences and on discussions with both domain experts and visualization practitioners. We find that creating visualization tools for engineering tensors often involves solving multiple different technical problems at the same time—including visual intuitiveness, scalability, interactivity, providing both detail and context, integration with modeling and simulation, representing uncertainty and managing multi-fields; as well as overcoming terminology barriers and advancing research in the mathematical aspects of tensor field processing. We further note the need for tools and data repositories to encourage faster advances in the field. Our interest in creating and proposing this list is to initiate a discussion about important research issues within the visualization of engineering tensor fields.

References

  1. 1.
    Brannon, R.: Mohr’s circle and more circles (Online). Available: http://www.mech.utah.edu/brannon/public/MohrsCircle.pdf (2003)
  2. 2.
    Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: IEEE Visualization 1994, Washington, DC, pp. 140–147 (1994)Google Scholar
  3. 3.
    Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant planning in orthopedics. IEEE Trans. Vis. Comput. Graph. 15(6), 1399–1406 (2009)CrossRefGoogle Scholar
  4. 4.
    Dow, S., Glassco, A., Kass, J., Schwarz, M., Schwarz, D.L., Klemmer, S.R.: Parallel prototyping leads to better design results, more divergence, and increased self-efficacy. Trans. Comput. Hum. Interact 11(4), 18:1–18:24 (2010)Google Scholar
  5. 5.
    Hashash, Y.M.A., Yao, J.I.-C., Wotring, D.C.: Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response. Int J Numer Anal Methods Geomech 27(7), 603–626 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Johnson, C.R.: Top scientific visualization research problems. IEEE Comput. Graph. Appl. 24(4), 13–17 (2004)CrossRefGoogle Scholar
  7. 7.
    Kratz, A., Meyer, B., Hotz, I.: A visual approach to analysis of stress tensor fields. ZIB-report technical report 10–26 (2010)Google Scholar
  8. 8.
    Kolecki, J.C.: An introduction to tensors for students of physics and engineering, NASA/TM–2002-211716 (Online). Available: http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
  9. 9.
    Maries, A., Haque, Md.A., Yilmaz, S.L., Nik, M.B., Marai, G.E.: Interactive exploration of stress tensors used in computational turbulent combustion. In: Laidlaw, D., Villanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    N.N.: Abaqus Analysis User’s Manual, Version 6.7 EF. Dassault Systèmes, Simulia Corp., ProvidenceGoogle Scholar
  11. 11.
    Slavin, V., Pelcovits, R., Loriot, G., Callan-Jones, A., Laidlaw, D.: Techniques for the visualization of topological defect behavior in nematic liquid crystals. IEEE Trans. Vis. Comput. Graph. 12(5), 1323–1328 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mario Hlawitschka
    • 1
  • Ingrid Hotz
    • 2
  • Andrea Kratz
    • 3
  • G. Elisabeta Marai
    • 4
  • Rodrigo Moreno
    • 5
  • Gerik Scheuermann
    • 1
  • Markus Stommel
    • 6
  • Alexander Wiebel
    • 7
  • Eugene Zhang
    • 8
  1. 1.Department of Computer ScienceLeipzig UniversityLeipzigGermany
  2. 2.German Aerospace CenterBraunschweigGermany
  3. 3.Zuse Institute BerlinBerlinGermany
  4. 4.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  5. 5.Department of Medical and Health Sciences (IMH) and Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköpingSweden
  6. 6.Chair of Polymer MaterialsSaarland UniversitySaarbrueckenGermany
  7. 7.Department of Electrical Engineering and Computer SciencesCoburg University of Applied SciencesCoburgGermany
  8. 8.School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallisUSA

Personalised recommendations