Advertisement

A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation

  • Tommaso Mansi
  • Roy Beinart
  • Oliver Zettinig
  • Saikiran Rapaka
  • Bogdan Georgescu
  • Ali Kamen
  • Yoav Dori
  • M. Muz Zviman
  • Daniel A. Herzka
  • Henry R. Halperin
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8330)

Abstract

This manuscript presents a framework for the pre-clinical validation of LBM-EP, a fast cardiac electrophysiology model based on the lattice-Boltzmann method (LBM). The overarching goal is to assess whether the model is able to predict ventricular tachycardia (VT) induction given lead location and stimulation protocol. First, the random-walk algorithm is used to interactively segment the heart ventricles from delayed-enhancement magnetic resonance images (DE-MRI). Scar and border zone are visually delineated using image thresholding. Then, a detailed anatomical model is generated, comprising fiber architecture and spatial distribution of action potential duration. That information is rasterized to a Cartesian grid, and the cardiac potentials are computed. The framework is illustrated on one swine data, for which two different pacing protocols at four different sites were tested. Each of the protocols were then virtually tested by computing seven seconds of heart beat. Model predictions in terms of VT induction were compared with what was observed in the animal. Our parallel implementation on graphics processing units required a total computation time of about two minutes at an isotropic grid resolution of 0.8 mm (21s at a resolution of 1.5 mm), thus enabling interactive VT testing.

Keywords

Ventricular Tachycardia Right Ventricle Action Potential Duration Border Zone Pace Leave Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliot, E.M., Stevenson, W.G., Almendral-Garrote, J.M., Bogun, F., Calkins, C.H., Delacretaz, E., Della Bella, P., Hindricks, G., Jaïs, P., Josephson, M.E., et al.: Ehra/hrs expert consensus on catheter ablation of ventricular arrhythmias developed in a partnership with the european heart rhythm association (ehra), a registered branch of the european society of cardiology (esc), and the heart rhythm society (hrs); in collaboration with the american college of cardiology (acc) and the american heart association (aha). Europace 11(6), 771–817 (2009)CrossRefGoogle Scholar
  2. 2.
    Ashikaga, H., Arevalo, H., Vadakkumpadan, F., Blake III, R.C., Bayer, J.D., Nazarian, S., Muz Zviman, M., Tandri, H., Berger, R.D., Calkins, H., et al.: Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm (2013)Google Scholar
  3. 3.
    Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Annals of Biomedical Engineering 38(3), 1071–1097 (2010)CrossRefGoogle Scholar
  4. 4.
    Chhay, M., Coudière, Y., Turpault, R.: How to compute the extracellular potential in electrocardiology from an extended monodomain model. Research Report RR-7916, INRIA (March 2012)Google Scholar
  5. 5.
    De Bakker, J., Van Capelle, F., Janse, M., Wilde, A., Coronel, R., Becker, A., Dingemans, K., Van Hemel, N., Hauer, R.: Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77(3), 589–606 (1988)CrossRefGoogle Scholar
  6. 6.
    Georgescu, B., Rapaka, S., Mansi, T., Zettinig, O., Kamen, A.: Towards real-time cardiac electrophysiology computations using gp-gpu lattice-boltzmann method. In: High-Performance Computing, a 2013 MICCAI Workshop (2013)Google Scholar
  7. 7.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  8. 8.
    Lee, S.L., Schär, M., Kozerke, S., Harouni, A.A., Sena-Weltin, V., Zviman, M.M., Halperin, H., McVeigh, E.R., Herzka, D.A.: Independent respiratory navigators for improved 3d psir imaging of myocardial infarctions. Journal of Cardiovascular Magnetic Resonance 13(suppl. 1), P18 (2011)Google Scholar
  9. 9.
    Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bulletin of Mathematical Biology 65(5), 767–793 (2003)CrossRefGoogle Scholar
  10. 10.
    Ng, J., Jacobson, J.T., Ng, J.K., Gordon, D., Lee, D.C., Carr, J.C., Goldberger, J.J.: Virtual electrophysiological study in a 3-dimensional cardiac magnetic resonance imaging model of porcine myocardial infarction. Journal of the American College of Cardiology 60(5), 423–430 (2012)CrossRefGoogle Scholar
  11. 11.
    Pop, M., et al.: A 3d mri-based cardiac computer model to study arrhythmia and its in-vivo experimental validation. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 195–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Rapaka, S., Mansi, T., Georgescu, B., Pop, M., Wright, G.A., Kamen, A., Comaniciu, D.: LBM-EP: Lattice-boltzmann method for fast cardiac electrophysiology simulation from 3d images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 33–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Relan, J., Chinchapatnam, P., Sermesant, M., Rhode, K., Ginks, M., Delingette, H., Rinaldi, C.A., Razavi, R., Ayache, N.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. J. R. Soc. Interface Focus 1(3), 396–407 (2011)CrossRefGoogle Scholar
  14. 14.
    Stankovicova, T., Szilard, M., De Scheerder, I., Sipido, K.R.: M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovascular Research 45(4), 952–960 (2000)CrossRefGoogle Scholar
  15. 15.
    Talbot, H., Marchesseau, S., Duriez, C., Sermesant, M., Cotin, S., Delingette, H.: Towards an interactive electromechanical model of the heart. Interface Focus 3(2) (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tommaso Mansi
    • 1
  • Roy Beinart
    • 2
    • 3
    • 4
  • Oliver Zettinig
    • 1
    • 5
  • Saikiran Rapaka
    • 1
  • Bogdan Georgescu
    • 1
  • Ali Kamen
    • 1
  • Yoav Dori
    • 6
    • 7
  • M. Muz Zviman
    • 2
  • Daniel A. Herzka
    • 8
  • Henry R. Halperin
    • 2
    • 8
    • 9
  • Dorin Comaniciu
    • 1
  1. 1.Imaging and Computer VisionSiemens Corporate TechnologyPrincetonUSA
  2. 2.Cardiology DivisionJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Davidai Arrhythmia Center, Leviev Heart CenterSheba Medical CenterRamat GanIsrael
  4. 4.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  5. 5.Computer Aided Medical ProceduresTechnische Universität MünchenGermany
  6. 6.Division of CardiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  7. 7.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  8. 8.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  9. 9.The Russell H. Morgan Department of Radiology and Radiological SciencesJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations