4-Round Resettably-Sound Zero Knowledge

  • Kai-Min Chung
  • Rafail Ostrovsky
  • Rafael Pass
  • Muthuramakrishnan Venkitasubramaniam
  • Ivan Visconti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8349)

Abstract

While 4-round constructions of zero-knowledge arguments are known based on the existence of one-way functions, constuctions of resettably-sound zero-knowledge arguments require either stronger assumptions (the existence of a fully-homomorphic encryption scheme), or more communication rounds. We close this gap by demonstrating a 4- round resettably-sound zero-knowledge argument for NP based on the existence of one-way functions.

Keywords

Signature Scheme Commitment Scheme Auxiliary Input Partial Transcript Signing Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barak, B., Goldreich, O.: Universal arguments and their applications. In: Computational Complexity, pp. 162–171 (2002)Google Scholar
  2. 2.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS 2002, pp. 116–125 (2001)Google Scholar
  3. 3.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: FOCS (2012)Google Scholar
  6. 6.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC (2013)Google Scholar
  7. 7.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proc. of the International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)Google Scholar
  9. 9.
    Chung, K.M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from one-way functions. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 60–69. IEEE Computer Society (2013)Google Scholar
  10. 10.
    Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: STOC. ACM (2013)Google Scholar
  11. 11.
    Di Crescenzo, G., Persiano, G., Visconti, I.: Improved setup assumptions for 3-round resettable zero knowledge. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 530–544. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC 1990, pp. 416–426 (1990)Google Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM (2009)Google Scholar
  14. 14.
    Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University Press (2001)Google Scholar
  15. 15.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. Journal of Cryptology 9(3), 167–190 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304. ACM (1985), http://doi.acm.org/10.1145/22145.22178
  18. 18.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Constant-round concurrent zero knowledge in the bounded player model. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 21–40. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC, pp. 705–714 (2011)Google Scholar
  21. 21.
    Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)Google Scholar
  22. 22.
    Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298 (2000)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC 1989, pp. 33–43 (1989)Google Scholar
  24. 24.
    Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance. Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012)Google Scholar
  25. 25.
    Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial zero-knowledge. In: ISTCS, pp. 3–17 (1993)Google Scholar
  26. 26.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC 2005, pp. 533–542 (2005)Google Scholar
  27. 27.
    Pass, R., Tseng, W.L.D., Wikström, D.: On the composition of public-coin zero-knowledge protocols. SIAM J. Comput. 40(6), 1529–1553 (2011)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures (1990)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Kai-Min Chung
    • 1
  • Rafail Ostrovsky
    • 2
  • Rafael Pass
    • 3
  • Muthuramakrishnan Venkitasubramaniam
    • 4
  • Ivan Visconti
    • 5
  1. 1.Academia SinicaTaiwan
  2. 2.UCLALos AngelesUSA
  3. 3.Cornell UniversityIthacaUSA
  4. 4.University of RochesterRochesterUSA
  5. 5.University of SalernoItaly

Personalised recommendations