Locally Updatable and Locally Decodable Codes

  • Nishanth Chandran
  • Bhavana Kanukurthi
  • Rafail Ostrovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8349)

Abstract

We introduce the notion of locally updatable and locally decodable codes (LULDCs). In addition to having low decode locality, such codes allow us to update a codeword (of a message) to a codeword of a different message, by rewriting just a few symbols. While, intuitively, updatability and error-correction seem to be contrasting goals, we show that for a suitable, yet meaningful, metric (which we call the Prefix Hamming metric), one can construct such codes. Informally, the Prefix Hamming metric allows the adversary to arbitrarily corrupt bits of the codeword subject to one constraint – he does not corrupt more than a δ fraction (for some constant δ) of the t “most-recently changed” bits of the codeword (for all 1 ≤ t ≤ n, where n is the length of the codeword).

Our results are as follows. First, we construct binary LULDCs for messages in {0, 1}k with constant rate, update locality of \(\mathcal{O}(\log^2 k)\), and read locality of \(\mathcal{O}(k^\epsilon)\) for any constant ε < 1. Next, we consider the case where the encoder and decoder share a secret state and the adversary is computationally bounded. Here too, we obtain local updatability and decodability for the Prefix Hamming metric. Furthermore, we also ensure that the local decoding algorithm never outputs an incorrect message – even when the adversary can corrupt an arbitrary number of bits of the codeword. We call such codes locally updatable locally decodable-detectable codes (LULDDCs) and obtain dramatic improvements in the parameters (over the information-theoretic setting). Our codes have constant rate, an update locality of \(\mathcal{O}(\log^2 k)\) and a read locality of \(\mathcal{O}(\lambda \log ^2k)\), where λ is the security parameter.

Finally, we show how our techniques apply to the setting of dynamic proofs of retrievability (DPoR) and present a construction of this primitive with better parameters than existing constructions. In particular, we construct a DPoR scheme with linear storage, \(\mathcal{O}(\log^2 k)\) write complexity, and \(\mathcal{O}(\lambda \log k)\) read and audit complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 319–333. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementation. In: Proceedings of the First ACM Cloud Computing Security Workshop, CCSW 2009, pp. 43–54 (2009)Google Scholar
  3. 3.
    Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 279–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. Cryptology ePrint Archive, Report 2013/520 (2013), http://eprint.iacr.org/
  5. 5.
    Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification with asymptotically optimal entropy loss. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 785–794 (2010)Google Scholar
  6. 6.
    Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally decodable codes of subexponential length. Computational Complexity 22(1), 159–189 (2013)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC, pp. 39–44 (2009)Google Scholar
  9. 9.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In: STOC, pp. 182–194 (1987)Google Scholar
  10. 10.
    Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In: Innovations in Theoretical Computer Science, ITCS, pp. 529–540 (2013)Google Scholar
  12. 12.
    Hemenway, B., Ostrovsky, R., Strauss, M.J., Wootters, M.: Public key locally decodable codes with short keys. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 605–615. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Juels, A., Kaliski, B.: Pors: proofs of retrievability for large files. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, pp. 584–597 (2007)Google Scholar
  15. 15.
    Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, STOC, pp. 80–86 (2000)Google Scholar
  16. 16.
    Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. In: STOC, pp. 167–176 (2011)Google Scholar
  17. 17.
    Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious ram and a new balancing scheme. In: SODA, pp. 143–156 (2012)Google Scholar
  18. 18.
    Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 573–584 (2005)Google Scholar
  19. 19.
    Ostrovsky, R.: An efficient software protection scheme. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 610–611. Springer, Heidelberg (1990)Google Scholar
  20. 20.
    Ostrovsky, R.: Efficient computation on oblivious rams. In: Ortiz, H. (ed.) STOC, pp. 514–523. ACM (1990)Google Scholar
  21. 21.
    Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 387–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Schulman, L.J.: Communication on noisy channels: A coding theorem for computation. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS, pp. 724–733 (1992)Google Scholar
  24. 24.
    Schulman, L.J.: Deterministic coding for interactive communication. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC, pp. 747–756 (1993)Google Scholar
  25. 25.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC, pp. 388–397 (1995)Google Scholar
  27. 27.
    Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San DiegoGoogle Scholar
  28. 28.
    Yekhanin, S.: Locally decodable codes. Foundations and Trends in Theoretical Computer Science 6(3), 139–255 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Nishanth Chandran
    • 1
  • Bhavana Kanukurthi
    • 2
  • Rafail Ostrovsky
    • 3
  1. 1.Microsoft ResearchIndia
  2. 2.Department of Computer ScienceUCLAUSA
  3. 3.Department of Computer Science and MathematicsUCLAUSA

Personalised recommendations