Advertisement

Continuous Non-malleable Codes

  • Sebastian Faust
  • Pratyay Mukherjee
  • Jesper Buus Nielsen
  • Daniele Venturi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8349)

Abstract

Non-malleable codes are a natural relaxation of error correcting/ detecting codes that have useful applications in the context of tamper resilient cryptography. Informally, a code is non-malleable if an adversary trying to tamper with an encoding of a given message can only leave it unchanged or modify it to the encoding of a completely unrelated value. This paper introduces an extension of the standard non-malleability security notion - so-called continuous non-malleability - where we allow the adversary to tamper continuously with an encoding. This is in contrast to the standard notion of non-malleable codes where the adversary only is allowed to tamper a single time with an encoding. We show how to construct continuous non-malleable codes in the common split-state model where an encoding consist of two parts and the tampering can be arbitrary but has to be independent with both parts. Our main contributions are outlined below:

  1. 1

    We propose a new uniqueness requirement of split-state codes which states that it is computationally hard to find two codewords X = (X 0,X 1) and X′ = (X 0,X 1′) such that both codewords are valid, but X 0 is the same in both X and X′. A simple attack shows that uniqueness is necessary to achieve continuous non-malleability in the split-state model. Moreover, we illustrate that none of the existing constructions satisfies our uniqueness property and hence is not secure in the continuous setting.

     
  2. 2

    We construct a split-state code satisfying continuous non-malleability. Our scheme is based on the inner product function, collision-resistant hashing and non-interactive zero-knowledge proofs of knowledge and requires an untamperable common reference string.

     
  3. 3

    We apply continuous non-malleable codes to protect arbitrary cryptographic primitives against tampering attacks. Previous applications of non-malleable codes in this setting required to perfectly erase the entire memory after each execution and required the adversary to be restricted in memory. We show that continuous non-malleable codes avoid these restrictions.

     

Keywords

non-malleable codes split-state tamper resilience 

References

  1. 1.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. Electronic Colloquium on Computational Complexity (ECCC) 20, 81 (2013)Google Scholar
  2. 2.
    Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the (im)possibility of tamper-resilient cryptography: Using fourier analysis in computer viruses. IACR Cryptology ePrint Archive 2013, 194 (2013)Google Scholar
  3. 3.
    Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. Electronic Colloquium on Computational Complexity (ECCC) 20, 118 (2013)Google Scholar
  8. 8.
    Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. IACR Cryptology ePrint Archive 2013, 565 (2013)Google Scholar
  9. 9.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 533–551. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: How to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)Google Scholar
  17. 17.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)Google Scholar
  18. 18.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes (2013). The full version will be available at the IACR Cryptology ePrint ArchiveGoogle Scholar
  19. 19.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. IACR Cryptology ePrint Archive 2013, 702 (2013)Google Scholar
  20. 20.
    Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: How to trade leakage for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (ATP) security: Theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Pietrzak, K.: Subspace lwe. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 548–563. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Sebastian Faust
    • 2
  • Pratyay Mukherjee
    • 1
  • Jesper Buus Nielsen
    • 1
  • Daniele Venturi
    • 3
  1. 1.Department of Computer ScienceAarhus UniversityDenmark
  2. 2.EPFL LausanneSwitzerland
  3. 3.Department of Computer ScienceSapienza University of RomeItaly

Personalised recommendations