Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol

  • Susumu Kiyoshima
  • Yoshifumi Manabe
  • Tatsuaki Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8349)

Abstract

We present the first general MPC protocol that satisfies the following: (1) the construction is black-box, (2) the protocol is universally composable in the plain model, and (3) the number of rounds is constant. The security of our protocol is proven in angel-based UC security under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries and constant-round semi-honest oblivious transfer protocols that are secure against quasi-polynomial-time adversaries. We obtain the MPC protocol by constructing a constant-round CCA-secure commitment scheme in a black-box way under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries. To justify the use of such a sub-exponential hardness assumption in obtaining our constant-round CCA-secure commitment scheme, we show that if black-box reductions are used, there does not exist any constant-round CCA-secure commitment scheme under any falsifiable polynomial-time hardness assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barak, B., Sahai, A.: How to play almost any mental game over the net—concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)Google Scholar
  2. 2.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  3. 3.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. In: STOC, pp. 235–244 (2000)Google Scholar
  5. 5.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  8. 8.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  9. 9.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)Google Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC. pp. 218–229 (1987)Google Scholar
  15. 15.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC, pp. 695–704 (2011)Google Scholar
  16. 16.
    Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: STOC, pp. 221–230 (2013)Google Scholar
  17. 17.
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. Cryptology ePrint Archive, Report 2012/652 (2012), http://eprint.iacr.org/
  18. 18.
    Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC, pp. 99–108 (2006)Google Scholar
  21. 21.
    Lin, H.: Concurrent Security. Ph.D. thesis, Cornell University (2011)Google Scholar
  22. 22.
    Lin, H., Pass, R.: Non-malleability amplification. In: STOC, pp. 189–198 (2009)Google Scholar
  23. 23.
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRefMATHGoogle Scholar
  28. 28.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: STOC, pp. 232–241 (2004)Google Scholar
  31. 31.
    Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  36. 36.
    Prabhakaran, M., Sahai, A.: New notions of security: Achieving aniversal composability without trusted setup. In: STOC, pp. 242–251 (2004)Google Scholar
  37. 37.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS, pp. 531–540 (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Susumu Kiyoshima
    • 1
  • Yoshifumi Manabe
    • 2
  • Tatsuaki Okamoto
    • 1
  1. 1.NTT Secure Platform LaboratoriesJapan
  2. 2.Kogakuin UniversityJapan

Personalised recommendations