Programming P Systems with Complex Objects

  • Radu Nicolescu
  • Florentin Ipate
  • Huiling Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)

Abstract

We develop and formalise our earlier complex objects proposal and show that it enables an efficient high-level programming of P systems.

Keywords

P systems complex objects generic rules data structures control flow parallel composition function calls recursion numerical P systems NP-complete applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Bonchis, C., Ciobanu, G., Izbasa, G.: Encodings and arithmetic operations in P systems. In: Gutierrez-Naranjo, M., Păun, G., Riscos-Nunez, A., Romero-Campero, F.J. (eds.) Brainstorming Week on Membrane Computing, vol. 2, pp. 1–28. Universidad de Sevilla (2006)Google Scholar
  2. 2.
    Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 81–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bălănescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. International Journal of Natural Computing Research 2(2), 1–18 (2011)CrossRefGoogle Scholar
  4. 4.
    Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A faster P solution for the Byzantine agreement problem. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. Journal of Logic and Algebraic Programming 79(6), 334–349 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    ElGindy, H., Nicolescu, R., Wu, H.: Fast distributed DFS solutions for edge-disjoint paths in digraphs. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 173–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M., Turcanu, A., Valencia Cabrera, L., Garcia-Quismondo, M., Mierla, L.: 3-col problem modelling using simple kernel P systems. Int. J. Comput. Math. 90(4), 816–830 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gimel’farb, G., Gong, R., Nicolescu, R., Delmas, P.: Concurrent propagation for solving ill-posed problems of global discrete optimisation. In: 2012 21st International Conference on Pattern Recognition Pattern Recognition (ICPR), pp. 1864–1867 (2012)Google Scholar
  9. 9.
    Gimel’farb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 285–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Gimel’farb, G., Nicolescu, R., Ragavan, S.: P system implementation of dynamic programming stereo. Journal of Mathematical Imaging and Vision, 1–14 (2012)Google Scholar
  11. 11.
    Manca, V., Lombardo, R.: Computing with multi-membranes. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 282–299. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Nagy, B.: On efficient algorithms for SAT. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 295–310. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Nicolescu, R.: Parallel and distributed algorithms in P systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 35–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 164–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Natural Computing 11, 637–651 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Păun, G., Păun, R.: Membrane computing and economics: Numerical P systems. Fundam. Inf. 73(1,2), 213–227 (2006)MATHGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010)MATHGoogle Scholar
  19. 19.
    Wu, H.: Minimum spanning tree in P systems. In: Proceedings of the Asian Conference on Membrane Computing (ACMC 2012), Wuhan, China, October 15-18, pp. 88–104 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Radu Nicolescu
    • 1
  • Florentin Ipate
    • 2
    • 3
  • Huiling Wu
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Computer ScienceUniversity of BucharestBucharestRomania
  3. 3.Department of Computer ScienceUniversity of PiteştiPiteştiRomania

Personalised recommendations