Flattening and Simulation of Asynchronous Divisionless P Systems with Active Membranes

  • Alberto Leporati
  • Luca Manzoni
  • Antonio E. Porreca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)


We prove that asynchronous P systems with active membranes without division rules can be simulated by single-membrane transition P systems using cooperative rules, even if the synchronisation mechanisms provided by electrical charges and membrane dissolution are exploited. In turn, the latter systems can be simulated by means of place/transition Petri nets, and hence all these models are computationally weaker than Turing machines.


Turing Machine Computation Step Active Membrane Evolution Rule Division Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 53–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical Computer Science 147, 117–136 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dal Zilio, S., Formenti, E.: On the dynamics of PB systems: A Petri net view. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Freund, R.: Asynchronous P systems and P systems working in the sequential mode. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC5 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC8 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Frisco, P., Govan, G., Leporati, A.: Asynchronous P systems with active membranes. Theoretical Computer Science 429, 74–86 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7, 311–324 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Păun, G.: P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 2
  • Antonio E. Porreca
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Laboratoire i3SUniversité Nice Sophia AntipolisSophia Antipolis CedexFrance

Personalised recommendations