About One-Sided One-Symbol Insertion-Deletion P Systems

  • Sergiu Ivanov
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)


In this article we consider insertion-deletion P systems inserting or deleting one symbol in one or two symbol(s) left context (more precisely of size (1,2,0;1,1,0) and (1,1,0;1,2,0)). We show that computational completeness can be achieved by using only 3 membranes in a tree-like structure. Hence we obtain a trade-off between the sizes of contexts of insertion and deletion rules and the number of membranes sufficient for computational completeness.


Normal Form Mathematical Linguistics Simulation Sequence Contextual Grammar Deletion Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Small size insertion and deletion systems. In: Martin-Vide, C. (ed.) Scientific Applications of Language Methods. Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory, vol. 2, ch. 9, pp. 459–524. World Sci. (2010)Google Scholar
  2. 2.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P Systems with Minimal Insertion and Deletion. Theoretical Computer Science 412(1-2), 136–144 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood, Chichester, West Sussex (1993)Google Scholar
  4. 4.
    Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: Modelling RNA editing with guided insertion. Theor. Comput. Sci. 387(2), 103–112 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun, G., Salomaa, A. (eds.) NTFL. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/deletions with applications to biomolecular computation. In: SPIRE/CRIWG, pp. 47–54 (1999)Google Scholar
  7. 7.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proc. of 12th Workshop on Descriptional Complexity of Formal Systems. EPTCS, vol. 31, pp. 88–98 (2010)Google Scholar
  8. 8.
    Galiukschov, B.: Semicontextual grammars. Matem. Logica i Matem. Lingvistika, 38–50, Tallin University (1981) (in Russian)Google Scholar
  9. 9.
    Geffert, V.: Normal forms for phrase-structure grammars. ITA 25, 473–498 (1991)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages. PhD thesis, Univ. of Colorado at Boulder (1982)Google Scholar
  11. 11.
    Haussler, D.: Insertion languages. Information Sciences 31(1), 77–89 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kari, L.: On Insertion and Deletion in Formal Languages. PhD thesis, University of Turku (1991)Google Scholar
  13. 13.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: Characterizing RE using insertion-deletion systems. In: Proc. of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333 (1997)Google Scholar
  14. 14.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  15. 15.
    Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems. PhD thesis, Universitat Rovira i Virgili, Tarragona, Spain (2011)Google Scholar
  16. 16.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of P systems with small size insertion and deletion rules. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) Proc. International Workshop on The Complexity of Simple Programs, Cork, Ireland, December 6-7. EPTCS, vol. 1, pp. 108–117 (2009)Google Scholar
  18. 18.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-deletion (P) systems with rules of size two. Natural Computing 10(2), 835–852 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  20. 20.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  24. 24.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer (1998)Google Scholar
  25. 25.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  26. 26.
    Smith, W.D.: DNA computers in vitro and in vivo. In: Lipton, R., Baum, E. (eds.) Proceedings of DIMACS Workshop on DNA Based Computers. DIMACS Series in Discrete Math. and Theoretical Computer Science, pp. 121–185. Amer. Math. Society (1996)Google Scholar
  27. 27.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA8. LNCS, vol. 2568, pp. 269–280. Springer, Heidelberg (2003)Google Scholar
  28. 28.
    Verlan, S.: On minimal context-free insertion-deletion systems. Journal of Automata, Languages and Combinatorics 12(1-2), 317–328 (2007)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, University of Paris Est (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergiu Ivanov
    • 1
  • Sergey Verlan
    • 1
    • 2
  1. 1.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est – Créteil Val de MarneCréteilFrance
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations