Advertisement

Solving SAT by P Systems with Active Membranes in Linear Time in the Number of Variables

  • Zsolt Gazdag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)

Abstract

In this paper we solve the SAT problem (the satisfiability problem of propositional formulas in conjunctive normal form) by two polynomially uniform families of P systems with active membranes. The novelty of these solutions is that these P systems can solve the SAT problem in linear time in the number of propositional variables occurring in the input. This means that the number of computation steps is independent form the number of clauses of the input. To achieve this efficiency our systems employ only the standard rules of P systems with active membranes plus membrane creation rules. Moreover, in the first solution the P systems do not use the polarizations of the membranes but use such membrane division rules which can change the labels of the involved membranes. In the second solution the P systems do not employ membrane label changing but use the polarizations of the membranes instead.

Keywords

Membrane computing P systems SAT problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A.: Minimal parallelism and number of membrane polarizations. The Computer Science Journal of Moldova 18(2), 149–170 (2010)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alhazov, A., Pan, L., Paun, G.: Trading polarizations for labels in P systems with active membranes. Acta Inf. 41(2-3), 111–144 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs. J. Log. Algebr. Program. 79(6), 317–325 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Polarizationless P Systems with Active Membranes Working in the Minimally Parallel Mode. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 62–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Gazdag, Z.: Solving SAT by P Systems with Active Membranes in Linear Time in the Number of Variables. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y. (eds.) CMC 2013. LNCS, vol. 8340, pp. 189–205. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Gazdag, Z., Kolonits, G.: A new approach for solving SAT by P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 195–207. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform solution to SAT using membrane creation. Theor. Comput. Sci. 371(1-2), 54–61 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes and Separation Rules. Acta Inf. 43(2), 131–145 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Paun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Paun, G.: Introduction to membrane computing. In: Applications of Membrane Computing, pp. 1–42 (2006)Google Scholar
  12. 12.
    Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010), http://portal.acm.org/citation.cfm?id=1738939 zbMATHGoogle Scholar
  13. 13.
    Pérez-Jiménez, M.J., Jiménez, Á.R., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zsolt Gazdag
    • 1
  1. 1.Department of Algorithms and their Applications, Faculty of InformaticsEötvös Loránd UniversityHungary

Personalised recommendations