Flattening in (Tissue) P Systems

  • Rudolf Freund
  • Alberto Leporati
  • Giancarlo Mauri
  • Antonio E. Porreca
  • Sergey Verlan
  • Claudio Zandron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)


For many models of P systems and tissue P systems, the main behavior of a specific system can be simulated by a corresponding system with only one membrane or cell, respectively; this effective construction is called flattening. In this paper we describe the main procedure of flattening for specific variants of static (tissue) P systems as well as for classes of dynamic (tissue) P systems with a bounded number of possible membrane structures or a bounded number of cells during any computation.


Computation Step Sequential Mode Active Membrane Formal Framework Derivation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Antoniotti, M., Freund, R., Leporati, A., Mauri, G.: Self-stabilization in membrane systems. The Computer Science Journal of Moldova 20(2), 133–146 (2012)MathSciNetGoogle Scholar
  2. 2.
    Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 53–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  4. 4.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330, 251–266 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.: A formalization of membrane systems with dynamically evolving structures. Int. J. Comput. Math. 90(4), 801–815 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally parallel derivation mode. In: Csuhaj-Varjú, E., Freund, R., Oswald, M., Salomaa, K. (eds.) International Workshop on Computing with Biomolecules, Wien, Austria, August 27, vol. 244, pp. 43–52 (2008),, OCG Google Scholar
  8. 8.
    Leporati, A., Manzoni, L., Porreca, A.E.: Flattening and simulation of asynchronous divisionless P systems with active membranes. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013, vol. 8340, pp. 238–248. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Improved universality results for parallel enzymatic numerical P systems. International Journal of Unconventional Computing 9(5-6), 385–404 (2013)Google Scholar
  10. 10.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000); see also TUCS Report 208 (November 1998), Google Scholar
  11. 11.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vols. Springer (1997)Google Scholar
  13. 13.
    The P Systems Website,
  14. 14.
    Verlan, S.: Using the formal framework for P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013, vol. 8340, pp. 57–80. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Alberto Leporati
    • 2
  • Giancarlo Mauri
    • 2
  • Antonio E. Porreca
    • 2
  • Sergey Verlan
    • 3
  • Claudio Zandron
    • 2
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  3. 3.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations