Advertisement

On Counter Machines versus dP Automata

  • Erzsébet Csuhaj-Varjú
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)

Abstract

Continuing the study of connections between classical and P automata variants, we show that dP automata, i.e., distributed systems of P automata, where the input multiset is mapped to the set of strings consisting of all permutations of its elements, are as powerful as the class of distributed systems of special counter machine acceptors. These variants of counter machines read multisets (represented as sets of all permutations of their elements) and manipulate counters in a conventional manner.

Keywords

Skin Region Computational Step Input Tape Counter Machine Terminal Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 76–89. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: [13], ch. 6, pp. 144–167Google Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea de Argeş, Romania, August 19-23, pp. 177–192, Pub. No. 1 of MolCoNet-IST-2001-32008 (2002)Google Scholar
  4. 4.
    Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus multi-head Finite Automata. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 120–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Csuhaj-Varjú, E., Vaszil, G.: On the power of P automata. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 55–66. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the EATCS 78, 231–236 (2002)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP automata. Annals of Bucharest University Mathematics-Informatics Series LVIII, 5–22 (2009)Google Scholar
  9. 9.
    Ibarra, O.H.: Membrane hierarchy in P systems. Theoretical Computer Science 334(1-3), 115–129 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Monien, B.: Two-way multi-head automata over a one-letter alphabet. RAIRO - Informatique théorique/Theoretical Informatics 14(1), 67–82 (1980)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Păun, G.: Membrane Computing: An Introduction. Natural Computing Series. Springer, Berlin (2002)CrossRefGoogle Scholar
  12. 12.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computers, Communication and Control V(2), 238–250 (2010)Google Scholar
  13. 13.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  14. 14.
    Păun, G., Pérez-Jiménez, M.J.: P and dP automata: A survey. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Maurer Festschrift. LNCS, vol. 6570, pp. 102–115. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Păun, G., Pérez-Jiménez, M.J.: An infinite hierarchy of languages defined by dP systems. Theoretical Computer Science 431, 4–12 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Păun, G., Pérez-Jiménez, M.J.: P automata revisited. Theoretical Computer Science 454, 222–230 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pérez–Jiménez, M.J.: A computational complexity theory in membrane computing. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  19. 19.
    Vaszil, G.: On the parallelizability of languages accepted by P automata. In: Kelemen, J., Kelemenová, A. (eds.) Pǎun Festschrift. LNCS, vol. 6610, pp. 170–178. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • György Vaszil
    • 2
  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations