A Simple and Low Cost Micromixer for Laminar Blood Mixing: Design, Optimization, and Analysis

  • Nhut Tran-Minh
  • Frank Karlsen
  • Tao Dong
  • Hai Le-The
Part of the Communications in Computer and Information Science book series (CCIS, volume 404)


The paper presents a design of micromixer for laminar blood mixing. In order to minimize the space usage for micromixer of an automatic sample collection system, a splitting and recombination (SAR) concept was employed to reduce the diffusion distance of the fluids. Moreover, ellipse-like micropillars were introduced to this concept to increase the mixing performance of micromixer. With software (COMSOL 4.3) for computational fluid dynamics (CFD) we simulated the mixing of fluids in a micromixer with ellipse-like micropillars and basic T-type mixer in a laminar flow regime. Numerical results illustrate that the micromixer with SAR concept achieves an outstanding mixing efficiency than the one without SAR concept. Numerical results also show that the SAR micromixer with ellipse-like micropillars is up to 99% efficient, and that efficiency reaches 90% in a short distance.


Micromixer passive mixing splitting and recombination MEMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, N.T., Wu, Z.: Micromixers—a review. J. Micromech. Micro eng. 16, R1–R16 (2005)Google Scholar
  2. 2.
    Hessel, V., Lowe, H., Schonfeld, F.: Micromixers—a review on passive and active mixing principles. Chemical Engineering Science 60, 2479–2501 (2005)CrossRefGoogle Scholar
  3. 3.
    Bhagat, A.A.S., Peterson, E.T.K., Papautsky, I.: A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J. Micromech. Microeng. 17, 1017–1024 (2007)CrossRefGoogle Scholar
  4. 4.
    Wong, S.H., Ward, M.C.L., Wharton, C.W.: Micro T-mixer as a rapid mixing micromixer. Sensors and Actuators B 100, 359–379 (2004)CrossRefGoogle Scholar
  5. 5.
    Nguyen, T.N.T., Kim, M., Park, J., Lee, N.: An effective passive microfluidic mixer utilizing chaotic advection. Sensors and Actuators B 132, 172–181 (2008)CrossRefGoogle Scholar
  6. 6.
    Lee, S.W., Kim, D.S., Lee, S.S., Kwon, T.H.: Split and recombination micromixer based on PDMS three-dimensional micro structure. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, pp. 1533–1536 (2005)Google Scholar
  7. 7.
    Lee, S.W., Lee, S.S.: Rotation effect in split and recombination micromixing. Sensors and Actuators B 129, 364–371 (2008)CrossRefGoogle Scholar
  8. 8.
    Fanga, W., Yang, J.: A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sensors and Actuators B 140, 629–642 (2009)CrossRefGoogle Scholar
  9. 9.
    Chen, Z., Bown, M.R., O’Sullivan, B., MacInnes, J.M., Allen, R.W.K., Mulder, M., Blom, M., van’t Oever, R.: Performance analysis of a folding flow micromixer. Microfluid. Nanofluid. 6, 763–774 (2009)CrossRefGoogle Scholar
  10. 10.
    Tran-Minh, N., Dong, T., Su, Q., Yang, Z., Jakobsen, H., Karlsen, F.: Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical. Biomed. Microdevices 13, 179–190 (2011)CrossRefGoogle Scholar
  11. 11.
    Currie, I.G.: Fundamental Mechanics of Fluids. McGraw-Hill, Inc., New York (1993)Google Scholar
  12. 12.
    Handley, A.J.: Heparin therapy: A simpler test of control. J. Clin. Path. 27(3), 250–252 (1974)CrossRefGoogle Scholar
  13. 13.
    Dixon, E.P., Grønn, P., King, L.M., Passineau, H., Doobay, H., Skomedal, H., Hariri, J., Hay, S.N., Brown, C.A., Fischer, T.J., Malinowski, D.P.: Analytical performance of RNA isolated from BD SurePathTM cervical cytology specimens by the PreTectTM HPV-Proofer assay. Journal of Virological Methods 185(2), 199–203 (2012)CrossRefGoogle Scholar
  14. 14.
    Burka, E.R.: Characteristics of RNA degradation in the erythroid cell. J. Clin. Invest. 48(7), 1266–1272 (1969)CrossRefGoogle Scholar
  15. 15.
    Lee, S., Lee, H.-Y., Lee, I.-F., Tseng, C.-Y.: Ink diffusion in water. Eur. J. Phys. 25, 331–336 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nhut Tran-Minh
    • 1
    • 2
  • Frank Karlsen
    • 1
  • Tao Dong
    • 1
  • Hai Le-The
    • 1
  1. 1.Vestfold University CollegeTonsbergNorway
  2. 2.Norchip ASKlokkarstuaNorway

Personalised recommendations