Advertisement

Selection of Wavelet Transform and Neural Network Parameters for Classification of Breathing Patterns of Bio-radiolocation Signals

  • Maksim Alekhin
  • Lesya Anishchenko
  • Alexander Tataraidze
  • Sergey Ivashov
  • Lyudmila Korostovtseva
  • Yurii Sviryaev
  • Alexey Bogomolov
Part of the Communications in Computer and Information Science book series (CCIS, volume 404)

Abstract

A novel method for classification of breathing patterns of bio-radiolocation signals breathing patterns (BSBP) in the task of non-contact screening of sleep apnea syndrome (SAS) is proposed, implemented on the base of wavelet transform (WT) and neural network (NNW) application with automated selection of their optimal parameters. The effectiveness of the proposed approach is tested on clinically verified database of BRL signals corresponding to the three classes of breathing patterns: obstructive sleep apnea (OSA); central sleep apnea (CSA); normal calm sleeping (NCS) without sleep- disordered breathing (SDB) episodes.

Keywords

bio-radiolocation non-stationary signal processing pattern recognition wavelet transform neural networks sleep apnea syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soldovieri, F., Catapano, I., Crocco, L., Anishchenko, L., Ivashov, S.: A feasibility study for life signs monitoring via a continuous-wave radar. International Journal of Antennas and Propagation 2012(420178), 5 (2012)Google Scholar
  2. 2.
    American sleep disorders association standards of practice committee practice parameters for the indications for polysomnography and related procedures. Polysomnography task force. Sleep 20(6), 406–422 (1997)Google Scholar
  3. 3.
    Alekhin, M., Anishchenko, L., Tataraidze, A., Ivashov, S., Parashin, V., Dyachenko, A.: Comparison of bioradiolocation and respiratory plethysmography signals in time and frequency domains on the base of cross-correlation and spectral analysis. International Journal of Antennas and Propagation 2013 (2013)Google Scholar
  4. 4.
    Alekhin, M., Anishchenko, L., Zhuravlev, A., Ivashov, S., Korostovtseva, L., Sviryaev, Y., Konradi, A., Parashin, V., Bogomolov, A.: Estimating diagnostic informativeness of bio-radiolocation pneumography in non-contact screening of sleep apnea syndrome. Biomedical Engineering 47(2) (2013)Google Scholar
  5. 5.
    Kirlin, R., Dizaji, R.: Optimum sampling frequency in wavelet based signal compression. In: Proceedings of 2000 Canadian Conference on Electrical and Computer Engineering, pp. 426–429. IEEE (2000)Google Scholar
  6. 6.
    Korchagina, D., Alekhin, M., Anishchenko, L.: Bio-radiolocation method at chest wall motion analysis during tidal breathing. In: Proceedings of 2010 European Radar Conference, pp. 475–478. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maksim Alekhin
    • 1
  • Lesya Anishchenko
    • 1
  • Alexander Tataraidze
    • 1
  • Sergey Ivashov
    • 1
  • Lyudmila Korostovtseva
    • 2
  • Yurii Sviryaev
    • 2
  • Alexey Bogomolov
    • 3
  1. 1.Remote Sensing LaboratoryBauman Moscow State Technical UniversityRussia
  2. 2.Blood and Endocrinology Centre, Sleep LaboratoryAlmazov Federal HeartRussia
  3. 3.State Research and Testing Institute of Military MedicineRussia

Personalised recommendations