Doomsday Equilibria for Omega-Regular Games

  • Krishnendu Chatterjee
  • Laurent Doyen
  • Emmanuel Filiot
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8318)


Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games.

In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile such that all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players objective, then the objective of every player is violated.

We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games.We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.


Perfect Information Imperfect Information Winning Strategy Acceptance Condition Parity Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. TOCL 5 (2004)Google Scholar
  3. 3.
    Alur, R., La Torre, S., Madhusudan, P.: Playing games with boxes and diamonds. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 128–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, pp. 73–82 (2008)Google Scholar
  5. 5.
    Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Log. 34(2), 166–170 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, Y., Zhang, T., Luo, H.: An improved lower bound for the complementation of rabin automata. In: LICS, pp. 167–176. IEEE Computer Society (2009)Google Scholar
  7. 7.
    Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multiparty contract signing. J. Autom. Reasoning 36(1-2), 39–83 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular games. CoRR, abs/1311.3238 (2013)Google Scholar
  9. 9.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. LMCS 3(3) (2007)Google Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365(1-2), 67–82 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Da Costa Lopes, A., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expressiveness and model checking. In: FSTTCS. LIPIcs, vol. 8, pp. 120–132 (2010)Google Scholar
  14. 14.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE Comp. Soc. (1991)Google Scholar
  15. 15.
    Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time strikes back. In: POPL, pp. 84–96 (1985)Google Scholar
  16. 16.
    Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500. Springer (2002)Google Scholar
  18. 18.
    Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences 22, 384–406 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Jamroga, W., Mauw, S., Melissen, M.: Fairness in non-repudiation protocols. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 122–139. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)Google Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)Google Scholar
  22. 22.
    Martin, D.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes Atl* decidable? A decidable fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 193–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proc. of FSTTCS. LIPIcs, vol. 8, pp. 133–144, Schloss Dagstuhl - LZfI (2010)Google Scholar
  25. 25.
    Nash, J.F.: Equilibrium points in n-person games. PNAS 36, 48–49 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Piterman, N.: From nondeterministic Büchi and streett automata to deterministic parity automata. Logical Methods in Computer Science 3(3) (2007)Google Scholar
  27. 27.
    Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: LICS, pp. 275–284 (2006)Google Scholar
  28. 28.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)Google Scholar
  29. 29.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Shapley, L.S.: Stochastic games. PNAS 39, 1095–1100 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ummels, M., Wojtczak, D.: The complexity of nash equilibria in stochastic multiplayer games. Logical Methods in Computer Science 7(3) (2011)Google Scholar
  33. 33.
    Wang, F., Huang, C.-H., Yu, F.: A temporal logic for the interaction of strategies. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 466–481. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
  • Emmanuel Filiot
    • 3
  • Jean-François Raskin
    • 3
  1. 1.IST AustriaAustria
  2. 2.LSV, ENS Cachan & CNRSFrance
  3. 3.CSUniversité Libre de Bruxelles – U.L.BBelgium

Personalised recommendations